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Abstract: Mamikon A. Mnatsakanian showed the area swept out by a tangent is equal to

the area of its corresponding Ikon (collecting all the tangent lines as if the originated from

one common point). Here we extend Mamikon’s theorem to areas swept by normal lines and

other regions.
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1. Introduction

Mamikon A. Mnatsakanian showed Theorem 1.1 in [1] a beautiful and simple
piece of geometric intuition. It is known that areas of sections of a tangent
developable are independent of three dimensions, Mamikon showed these areas
are independent of arclength. We will show an extension to this theorem.

Let γ be a regular unit parametrized curve in R
2. Let σ(u, v) = γ(u) +

vT (u) be a parametrization of the developable tangent surface of γ. Let region
R of σ(u, v) be given by u1 ≤ u ≤ u2 and 0 ≤ u ≤ v(u). The region R is
a developable normal surface. Let φ be the angle made by T and some fixed
vector (say the x-axis). We denote the area of the ikon as AI
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Figure 1

AI =

∫

v(φ) dφ.

where v(φ) = v(s(φ)) is now independent of arclength. Mamikon then states

Theorem 1.1 (Mamikon’s Theorem). The area of the region on a devel-

opable tangent surface equals the area of the ikon.

That is the area of the tangent sweep equals the area of the ikon, see Figure
1.

2. A First Extension

We will extend these results to a new structure. Let γ be a regular unit
parametrized curve in R

2. We define the surface σ(u, v) = γ(u) + vN (u)
to be a normal developable. Let region R of σ(u, v) be given by u1 ≤ u ≤ u2
and v1(u) ≤ u ≤ v1(u). We now define the notions of area of the ikon (again
denoted AI) and the perpendicular area denoted as PA for a developable
normal surface. Let

AI =

∫

v(φ) dφ and PA =

∫∫

R

1 dudv.

where v(φ) = v(s(φ)) is now independent of arclength. Notice v(φ) is the
length of the normal whereas in Mamikon’s Theorem v(φ) was the length of
the tangent line.

The following is a Corollary of Theorem 3.1.

Corollary 2.1. The area of the surface σ(u, v) over the region R is

PA+AI where the region R = {(u, v) : u1 ≤ u ≤ u2 and v1(u) ≤ v ≤ v2(u)}.
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Figure 2

Figure 3

That is the area of the region on a developable normal surface equals the
area of the ikon plus the perpendicular area, see Figure 2.

An Application - An Elliptical Gasket (or a buffered stadium): Let
a surface be given by σ(u, v) = 〈a cos(u), b sin(u)〉 + v〈cos(u), sin(u)〉. Let the
region R of the surface σ(u, v) be given by 0 ≤ u ≤ 2π and 0 ≤ v ≤ ℓ then the
surface area of the region is easily seen to be SA = PA+AI = 2π

√
abℓ+ πℓ2.

More generally, if we only know the perimeter (P ) of the stadium (or any
convex body with a smooth boundary) and we extend outward at a constant
length, L, normal to the stadium our area of our normal sweep is PA+ AI =
PL+ πℓ2, see Figure 3.

3. Further Extension

What regions that are partially like a normal developable and partial a tan-
gent developable? Let γ be a regular unit parametrized curve in R

2. Let
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Figure 4

θ : [u1, u2] → [0, π/2] be a once differentiable and decreasing function. Also let
σ(u, v) = γ(u)+v[cos(θ(u))N (u)+sin(θ(u)T (u)] be a surface parametrization.
We now have a surface parametrized by σ(u, v) which is a hybrid of the tangent
and normal developables.

We will use the same definition for AI. Again note that the AI could have a
different geometric interpretation then in either Theorem 1.1 or in Corollary 2.1.
For the PA we will have the exact same geometric interpretation, but with a
different formula

PA =

∫

u2

u1

v sin(θ(u)) du.

We will need one further idea, Radial Area, denoted RA. The RA is the area
over our angle θ changes over the length v, with formula

RA =

∫

θ2

θ1

1

2
v2(θ) dθ (where θ(u1) = θ1 and θ(u2) = θ2).

Theorem 3.1. Then the area of the surface σ(u, v) over the region R is

PA + AI + RA where the region R = {(u, v) : u1 ≤ u ≤ u2 and v1(u) ≤ v ≤
v2(u)}.

Or alternatively the Theorem 3.1 can be seen in Figure 4.

Proof. Let σ(u, v) = γ(u) + v[sin(θ(u))N (u) + cos(θ(u))T (u)] be the para-
metrization of the surface. Now to compute the first fundamental form we



AN EXTENSION OF MAMIKON’S THEOREM 963

have

σu(u, v) = γ̇ + v
[

sin(θ)Ṅ (u) + cos(θ)θ̇N(u) + cos(θ)Ṫ (u)− sin(θ)θ̇T (u)
]

= T + v
[

sin(θ)(−κT ) + cos(θ)θ̇N(u) + cos(θ)(κN )− sin(θ)θ̇T (u)
]

= (1− v sin(θ)(κ+ θ̇))T + v cos(θ)(θ̇ + κ)N (u)

(1)

using the Frenet-Serret equations in equation (1) (found in any elementary
differential geometry book such as [2]). And we have σv(u, v) = sin(θ)N (u) +
cos(θ)T (u). So

E = σu(u, v) · σu(u, v) =
[

1− v sin(θ)(κ+ θ̇)
]2

+ v2 cos2(θ)(θ̇ + κ)2

= 1− 2v sin(θ)(θ̇ + κ) + v2(θ̇ + κ)2

F = σu(u, v) · σv(u, v) = sin(θ)v cos(θ)(θ̇ + κ) + cos(θ)(1− v sin(θ)(κ+ θ̇))

= cos(θ), and

G = σv(u, v) · σv(u, v) = 1.

Therefore

√

EG− F 2 =

√

(1− 2v sin(θ)(θ̇ + κ) + v2(θ̇ + κ)2)− cos2(θ)

=

√

sin2(θ)− 2v sin(θ)(θ̇ + κ) + v2(θ̇ + κ)2

=

√

(

sin(θ)− v(θ̇ + κ)
)2

= sin(θ)− v(θ̇ + κ).

Thus the area as given by the second fundamental form is
∫∫

R

√

EG− F 2 du dv

=

∫

u2

u1

∫

v2(u)

v1(u)
sin(θ)− v(θ̇ + κ) dv du

=

∫

u2

u1

∫

v2(u)

v1(u)
sin(θ) dv du−

∫

u2

u1

∫

v2(u)

v1(u)
vκ dv du

−
∫

u2

u1

∫

v2(u)

v1(u)
vθ̇ dv du

= PA−
∫

u2

u1

1

2
v2(u)κdu −

∫

u2

u1

1

2
v2(u)θ̇ du
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= PA+

∫

u2

u1

1

2
v2(φ) dφ +

∫

u2

u1

1

2
v2(θ) dθ

= PA+AI +RA.
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