
ELTON NEAR UNCONDITIONALITY OF ARRAYS

F. SANACORY

Abstract. There are many notions of partial unconditionality defined for a weakly null
basic sequence in a Banach space. In 2008 the idea of Schreier unconditionality was extended
to a structure in Banach spaces called arrays. Here we extend the idea of Elton near
unconditionality to arrays.

0. Introduction

The mission of finding unconditionality in every Banach space ended in 1993 with the
Banach space of Gowers and Maurey [6] in which there is no unconditional basic sequence.
However the search for unconditionality was not in vain. There have been several partial
results. And work in finding these partial unconditionalities continues in [2], [3] and [7].
Generally, these partial unconditionalities are found in every weakly null basic sequence.
Two of the first such partial unconditionalities are: Elton δ-near unconditionality [4] (which
can be found in [10]) and Schreier unconditionality (see [8], [11] and [9]). In 2008 in [1]
Schreier unconditionality was extended to arrays in Banach spaces. Herein, we will extend
δ-near unconditionality to arrays in Banach spaces.

First we define the structures we will need using the same definitions found in [1]. Let
I = {(i, j) ∈ N2 : i ≤ j}. Define an order on I (reverse lexicographical order) as

(i1, j1) <r` (i2, j2) if and only if

{
j1 < j2, or

j1 = j2 and i1 < i2.

We say an array is a collection of vectors (xi,j)(i,j)∈I in a Banach space so that for each
i0 ∈ N we have (xi0,j)j≥i0:j∈N is a seminormalized weakly null sequence. A subarray of
(xi,j)(i,j)∈I is an array (yi,`)(i,`)∈I so that for each i0 ∈ N there is some increasing sequence

(ni0` )∞`=1 in N so that yi0,` = x
i0,n

i0
`

for all ` ∈ N. A regular array is an array when ordered

with <r` is a basic sequence.

1. Theorem

The original theorem by Elton for sequences is as follows:

Theorem 1.1 (J. Elton). Let (xj) be a normalized weakly null basic sequence in a Banach
space X. Then there exists a subsequence (yj) of (xj) such that for any δ > 0 there is
C = C(δ) so that for any (an) ∈ c00 with |an| ≤ 1 and for all F ⊆ {supp (aj) : |aj| ≥ δ}
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‖
∑
i∈F

ajyj‖ ≤ C(δ)‖
∑

ajyj‖.

Moreover, C = C(δ) is independent of the sequence.

One of the powers of the array (as seen in [1]) is preserving the properties of each row (ie
(xi,j)j≥i0:j∈N). We extend Theorem 1.1 to arrays and preserve the rows. That is, Elton type
projections on rows are bounded.

Theorem 1.2. Let (xi,j)(i,j)∈I be a normalized regular array in a Banach space X. Then
there exists a subarray (yi,j)(i,j)∈I of (xi,j)(i,j)∈I such that for any δ > 0 there is C = C(δ)
so that for any (an,m) ∈ c00(I) with |an,m| ≤ 1 and for any k0 ∈ N and F ⊆ {(k0, j) ∈
supp (ai,j) : |ai,j| ≥ δ}

‖
∑

(k0,i)∈F

ak0,jyk0,j‖ ≤ C(δ)‖
∑

ai,jyi,j‖.

Moreover, C = C(δ) is independent of the sequence.

2. proof

The main ingredient in the selection of the array is Ramsey theory; and the particular
flavor of Ramsey theory we will be using is Theorem 2.1 by Galvin and Prikry [5]. For M ,
an infinite subset of N, we say [M ] = {(ni)∞i=1 ⊆M : n1 < n2 < n3 < · · · }. And we say [M ]ω

Theorem 2.1. Let [N]ω = P0 ∪ P1 ∪ · · · ∪ Pk−1 where each Pi is Borel. Then there is an
infinite H ⊂ N so that for some i ∈ {0, 1, . . . , k − 1} we have [Pi]

ω ⊂ Pi.

Now a few general remarks about arrays (can be found in [1]).

Remark 2.2. If (xi,j)(i,j)∈I is a regular array and (yi,j)(i,j)∈I is a subarray of (xi,j)(i,j)∈I then
(yi,j)(i,j)∈I is also regular.

Remark 2.3. Let (xi)
N
i=1 be a finite basic sequence in some infinite dimensional Banach

space X having basis constant C. Let (yi) be a seminormalized weakly null sequence X and
ε > 0. Then there exists an n ∈ N such that (x1, x2, . . . , xN , yn) is a basic sequence with
constant C(1 + ε).

By repeated application of Remark 2.3 we obtain the following.

Remark 2.4. Let X be a Banach space and for every i ∈ N let (xi,j)
∞
j=i be a seminormalized

weakly null sequence in X. Then there exists a subarray (yi,j)(i,j)∈I of (xi,j)(i,j)∈I which is
regular. Moreover, the basis constant of (yi,j)(i,j)∈I can be chosen to be arbitrarily close to 1.

We begin with Lemma 2.5 which roughly says that given any regular array and some i0
for any functional f there is another functional g which preserves the positive mass of f on
some subset of I and is very small at some point (i0, j0) in the array. For f ∈ X∗ we say
f+(x) = f(x) if f(x) > 0 and f+(x) = 0 otherwise.

Lemma 2.5. Let (xi,j)(i,j)∈I be a regular array in a Banach space X, F ⊆ 2Ba(X∗), δ > 0,
i0, k0 ∈ N and K > 0. Then there exists a subarray (yi,j)(i,j)∈I of (xi,j)(i,j)∈I such that for
any B = {b1, b2, . . . , bp} ⊆ {k0, k0 + 1, k0 + 2, . . .}, and any j0 ∈ N where (i0, j0) <r` (k0, b1)
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we have the following property:

If there exists f ∈ F so that
∑p

j=1 f
+(y(k0,bj)) ≥ K

then there exists g ∈ F so that
∑p

j=1 g
+(y(k0,bj)) ≥ K and |g(y(i0,j0))| < δ.

Additionally if (zi,j)(i,j)∈I is a subarray of (yi,j)(i,j)∈I the above property still holds.

Proof. Let

Sk =

{
M = (mi)

∞
i=1 ∈ [N] : if there is f ∈ F with

k∑
i=2

f+(xk0,mi
) ≥ K

then there is g ∈ F with
k∑
i=2

g(xk0,mi
) ≥ K and |g(xi0,m1)| < δ

}
Let S = ∩∞k=1Sk. Notice each Sk is pointwise closed. Thus S is Borel and by Theorem 2.1

there is M ∈ [N] so that either [M ] ⊆ S or [M ] ⊆ [N] \ S.
Assume (toward contradiction) that there is an M = (mi) ∈ [N] so that [M ] ⊆ [N] \ S.

Let n be arbitrary and for each j with 1 ≤ j ≤ n define Lj = {mj,mn+1,mn+2, . . .}. So
Lj /∈ S. Thus for each j with 1 ≤ j ≤ n there is fj ∈ F and `j ∈ N so that

`j∑
i=2

f+
j (xk0,mi

) ≥ K

and |fj(xi0,mj
)| ≥ δ. Let `j0 = min{`j}. For each j with 1 ≤ j ≤ n we have Lj /∈ S and∑`j0

i=2 f
+
j0

(xk0,mi
) ≥ K thus |fj0(xi0,mj

)| ≥ δ. Since n is arbitrary we have that for each n
there is a fn ∈ 2Ba(x∗) with |fn(xi0,mj

)| ≥ δ for all j with 1 ≤ j ≤ n contradicting (xio,j)
∞
j=i0

is weakly null. Therefore there is some (mi) ∈ [N] so that [(mi)] ∈ S. Define

yi,j =


xi,j if (i, j) <r` (i0, j0),

xi0,m1 if (i, j) = (i0, j0),

xi,mj−j0+1
if (i, j) >r` (i0, j0).

�

We continue by extending Lemma 2.5. In Lemma 2.6 we generate another regular subarray
with the property that for any functional f we can find another functional g preserving the
positive mass on that same subset of I. And additionally, we gain freedom as to the array
vector that will be small on g.

Lemma 2.6. Let (xi,j)(i,j)∈I be a regular array in a Banach space X, K <∞, F ⊆ 2Ba(X∗)
and δ > 0. Then there exists a subarray (yi,j)(i,j)∈I of (xi,j)(i,j)∈I such that for any k0 ∈ N,
any B = {b1, b2, . . . , bp} ⊆ {k0, k0 + 1, k0 + 2, . . .} and any (i0, j0) ∈ I with (1, k0) ≤r`
(i0, j0) <r` (k0, b1) we have the following:

If there exists f ∈ F so that
∑p

j=1 f
+(y(k0,bj)) ≥ K
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then there exists g ∈ F so that
∑p

j=1 g(y(k0,bj)) ≥ K and |g(y(i0,j0))| < δ.

Proof. We will define a subarray recursively on the column index (that has been the second
index j).

For j = 1 apply Lemma 2.5 to (xi,j)(i,j)∈I , F , δ, K, i0 = 1, and k0 = 1 to obtain a subarray
(y1
i,j)(i,j)∈I of (xi,j)(i,j)∈I with the property that for any B = {b1, b2, . . . , bp} ⊆ {1, 2, 3, . . .},

and for any (1, j0) <r` (1,min(B)) we have the following property:

If there exists f ∈ F so that
∑p

j=1 f
+(y1

(1,bj)
) ≥ K

then there exists g ∈ F so that
∑p

j=1 g
+(y1

(1,bj)
) ≥ K and |g(y1

(1,j0))| < δ.

For j = 2 apply Lemma 2.5 to (y1
i,j)(i,j)∈I , F , δ, K, and then successively for each pair

i0 = 1, and k0 = 2, i0 = 2, and k0 = 1, and i0 = 2, and k0 = 2 to obtain a subarray
(y2
i,j)(i,j)∈I of (y1

i,j)(i,j)∈I with the property that for any B = {b1, b2, . . . , bp} ⊆ {1, 2, 3, . . .},
where i0, k0 ∈ {1, 2} and (1, 2) ≤r` (i0, j0) <r` (k0,min(B)) we have the following property:

If there exists f ∈ F so that
∑p

j=1 f
+(y2

(k0,bj)
) ≥ K

then there exists g ∈ F so that
∑p

j=1 g
+(y2

(k0,bj)
) ≥ K and |g(y2

(i0,j0))| < δ.

For j = r (for some r > 1) apply Lemma 2.5 to (yr−1
i,j )(i,j)∈I , F , δ, K, and then successively

for each pair (i0, k0) ∈ {(i, j0) : 1 ≤ i < j0} ∪ {(j0, j) : 1 ≤ j ≤ j0} to obtain a subarray
(yri,j)(i,j)∈I of (yr−1

i,j )(i,j)∈I with the property that for any B = {b1, b2, . . . , bp} ⊆ {1, 2, 3, . . .},
where i0, k0 ∈ {1, 2, . . . , k0} and (1, r) ≤r` (i0, j0) <r` (k0,min(B)) we have the following
property:

If there exists f ∈ F so that
∑p

j=1 f
+(yr−1

(k0,bj)
) ≥ K

then there exists g ∈ F so that
∑p

j=1 g
+(yr−1

(k0,bj)
) ≥ K and |g(yr−1

(i0,j0))| < δ.

Define the subarray yi,j = yji,j for all (i, j) ∈ I of (xi,j)(i,j)∈I . We have built our subarray
and now we will show it satisfies the criterion above.

Let (i0, j0) ∈ I, k0 ∈ N and B = {b1, b2, . . . , bp} ⊆ {k0, k1, k2, . . .} so that (1, k0) ≤r`
(i0, j0) <r` (k0,min(B)). Since (yi,j)(i,j)∈I is a subarray of (yj0i,j)(i,j)∈I we have for B′ =

{b′1, b′2, . . . , b′p} where yk0,b1 = yj0k0,b′1
so that

if there exists f ∈ F so that
∑p

j=1 f
+(yj0(k0,b′j)

) ≥ K

then there exists g ∈ F so that
∑p

j=1 g
+(yj0(k0,b′j)

) ≥ K and |g(yj0(i0,j0))| < δ.
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Thus If there exists f ∈ F so that
∑p

j=1 f
+(y(k0,bj)) ≥ K

then there exists g ∈ F so that
∑p

j=1 g
+(y(k0,bj)) ≥ K and |g(yj0(i0,j0))| < δ.

�

Lemma 2.7. Let (xi,j)(i,j)∈I be a regular array in a Banach space X, ε > 0 and δ ∈ (0, 1).

Then there exists a subarray (yi,j)(i,j)∈I of (xi,j)(i,j)∈I so that if f ∈ Ba(X∗), k0 ∈ N, (̂i, ĵ) ∈ I
and B ⊆ {j ∈ N : j < ĵ and f(yk0,j) > 0} satisfies∑

j∈B

f(yk0,j) > ε

then there is a g ∈ Ba(X∗) with∑
j∈B

g+(yk0,j) > (1− δ)
∑
j∈B

f(yk0,j) and
∑

(i,j)∈C

|g(yi,j)| < δ

where C = {(i, j) ∈ I : (i, j) <r` (̂i, ĵ)} \ {(k0, j) ∈ I : j ∈ B and g(yk0,j) ≤ 0}. Additionally
all further subarrays of (yi,j)(i,j)∈I also have this property.

Proof. Let δn = 2−kn where (kn) is a fast increasing sequence in N that satisfies the following:

• δ1 ≤ δ
10

and

•
∑
jδj ≤ δε

10
.

Let A` =
{
− 1 + kδ` : k ∈ {0, 1, 2, . . . 2k`+1}

}
. So each A` is an δ`-net for [−1, 1]. We will

construct (yi,j) inductively.
For each a ∈ A1 define

Fa = {f ∈ Ba(X∗) : f(x1,1) ∈ a}.

And for each a ∈ A1 we apply Lemma 2.6 to (xi,j)(i,j)∈I , δ = δ2, F = Fa and K = kδ2
for k ∈ {1, 2, . . . , δ−2

2 } to obtain a subarray (y1,1
i,j )(i,j)∈I so that for any k0 ∈ N, any B =

{b1, b2, . . . , bp} ⊆ {k0, k0 + 1, k0 + 2, . . .} and any (i0, j0) ∈ I with (1, k0) ≤r` (i0, j0) <r`

(k0,min(F )) we have the following: If there exists f ∈ F so that
∑p

j∈B f
+(y(k0,bj)) ≥ K

then there exists g ∈ F so that
∑p

j=2 g(y(k0,bj)) ≥ K and |g(y(i0,b1))| < δ.

Set y1,1 = y1,1
1,1.

For each ~a ∈ A1× A2 define

F~a = {f ∈ Ba(X∗) : f(y1,1
1,1) ∈ a(1) and f(y1,1

1,2) ∈ a(2)}.

And for each ~a ∈ A1 × A2 we apply Lemma 2.6 to (y1,2
i,j )(i,j)∈I , δ = δ2, F = Fa and

K = kδ2 for k ∈ {1, 2, . . . , δ−2
2 } to obtain a subarray (y1,2

i,j )(i,j)∈I so that for any k0 ∈ N, any
B = {b1, b2, . . . , bp} ⊆ {k0, k0 + 1, k0 + 2, . . .} and any (i0, j0) ∈ I with (1, k0) ≤r` (i0, j0) <r`

(k0,min(F )) we have the following: If there exists f ∈ F so that
∑p

j∈B f
+(y1,2

(k0,bj)
) ≥ K

then there exists g ∈ F so that
∑p

j=2 g(y1,2
(k0,bj)

) ≥ K and |g(y(i0,b1))| < δ.

Set y1,2 = y1,2
1,2.

Continue “walking” through the entire index set I in <r` order setting a vector in our
(yi,j)(i,j)∈I after each step.
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Now that we have finished generating the subarray we move to proving the conclusion. So
let k0 ∈ N. Let f̄ ∈ Ba(X∗) and B ⊆ {j ≤ ĵ : f̄(yk0,j) > 0} so that

∑
j∈B f̄(yk0,j) > ε. Let

j∗ be minimal so that ∑
j∈B

f̄(yk0,j) ≤
1

δj∗
.

So
∑

j∈B f̄(yk0,j) >
1

δj∗−1
if j∗ > 1. Note∑

j∈B:j≥j∗
f̄(yk0,j) ≥

∑
j∈B

f̄(yk0,j)− (j∗ − 1) =
∑
j∈B

f̄(yk0,j)− (j∗ − 1)δj∗−1
1

δj∗−1

≥
∑
j∈B

f̄(yk0,j)− (j∗ − 1)δj∗−1

∑
j∈B

f̄(yk0,j)

≥ (1− δ/10)
∑
j∈B

f̄(yk0,j) since (j∗ − 1)δj∗−1 < δ/10.

Since (yi,j)(i,j)∈I is bimonotone there is f ∈ Ba(X∗) so that

• f(yi,j) = 0 for all (i, j) <r` (k0, j∗) and
• f(yi,j) = f̄(yi,j) for all (i, j) ≥r` (k0, j∗).

So
∑

j∈B:j≥j∗ f̄(yk0,j) =
∑

j∈B:j≥j∗ f(yk0,j). We will “walk” through the array to generate our
functional g that satisfies the conclusion of the lemma.
STEP (k0, j

∗): If (k0, j
∗) ∈ {(k0, j) : j ∈ B} then let

gk0,j∗ = f and Bk0,j∗ = {j > j∗ : j ∈ B}.
Otherwise we have (k0, j

∗) /∈ {(k0, j) : j ∈ B}. Let k be maximal so that
∑

j∈B;j>j∗ f(yk0,j) >

kδj∗ and F~a where ~a = f(y1,1)×f(y1,2)×f(y2,2)×· · ·×f(yk0,j∗). By conclusion of Lemma 2.6
where F = F~a and K = kδj∗ , since f ∈ F~a there exists gk0,j∗ ∈ F~a so that:

•
∑

j∈B;j>j∗ g
+
k0,j∗

(yk0,j) > kδj∗ and

• |g(k0,j∗)(yk0,j)| < δj∗ .

Now we proceed to the inductive step case taking care to note that j ∈ Bi′,j′ we know
f(yk0,j) > 0 but we do not know if gi′,j′(yk0,j) is positive or negative.
STEP (i′, j′) + 1 (given (i′, j′)): If (i′, j′) ∈ {(k0, j) : j ∈ Bi′,j′} and gi′,j′(yk0,j) ≥ 0 then let

g(i′,j′)+1 = g(i′,j′).

Otherwise we have either (i′, j′) /∈ {(k0, j) : j ∈ B} or (i′, j′) ∈ {(k0, j) : j ∈ B} but
gi′,j′(yk0,j) < 0. Let k be maximal so that

∑
j∈Bi′,j′

gi′,j′(yk0,j) > kδj′ and F~a where ~a =

f(y1,1) × f(y1,2) × f(y2,2) × · · · × f(yi′,j′). By conclusion of Lemma 2.6 where F = F~a and
K = kδj′ , since f ∈ F~a there exists g(i′,j′)+1 ∈ F~a so that:

•
∑

j∈Bi′,j′
g+
(i′,j′)+1(yk0,j) > kδj′ and

• |g(i′,j′)(y(i′,j′)+1)| < δj′ .

Thus
∑

j∈Bi′,j′
g+
(i′,j′)(yk0,j)−

∑
j∈Bi′,j′

g+
(i′,j′)+1(yk0,j) > kδj′ + δj′ > 0.

And in either case set Bk0,j∗ = {j > j∗ : j ∈ B and (k0, j) >r` (i′, j′)}. Continue this

process until (i′, j′) = (̂i, ĵ) and set g = gî,ĵ. Note

|g(yi,j)− f(yi,j)| ≤ δj for (i, j) <r` (k0, j∗).
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Define P = {j ∈ Bk0,j∗ : g(yk0,j > 0)}. And note

0 <
∑

j∈Bk0,j∗

g+(yk0,j)−
∑

j∈Bk0,j∗

f(yk0,j) +
∑

jδj

<
∑

j∈Bk0,j∗

g+(yk0,j)−
∑

j∈Bk0,j∗

f(yk0,j) +
εδ

10

<
∑

j∈Bk0,j∗

g+(yk0,j)−
∑

j∈Bk0,j∗

f(yk0,j) +
δ

5

∑
j∈Bk0,j∗

f(yk0,j)

<
∑

j∈Bk0,j∗

g+(yk0,j)− (1− δ

5
)
∑

j∈Bk0,j∗

f(yk0,j).

Thus
∑

j∈Bk0,j∗
g+(yk0,j) > (1 − δ

5
)
∑

j∈Bk0,j∗
f(yk0,j) ≥ (1 − δ

5
)(1 − δ

2
)
∑

j∈B f(yk0,j) >

(1− δ)
∑

j∈B f(yk0,j).

Let N = {(i, j) <r` (̂i, ĵ) : (i, j) /∈ {(k0, j) : j ∈ B} or g(yi,j) < 0} and note

∑
(i,j)∈N

|g(yi,j)| ≤
ĵ∑
j=1

jδj <
εδ

10
< ε

. �

Proof of Theorem 1.2. Assume (xi,j) is monotone and basic (by renorming and passing to a
subsequence). Apply Lemma 2.7 to (xi,j) ε = δ/4 and F = Ba(x∗) to yield the subarray
(xi,j)

′. Note

0 < ε <
δ

2 + 2δ
.

Let (ai,j)(i,j)∈I ∈ c00(I) with |ai,j| ≤ 1 k0 ∈ N and F ⊆ {j : |ak0,j| > δ}. Let f ∈ Ba(x∗) so
that

‖
∑

(k0,j) where j∈F

ai,jx
′
i,j‖ =

∑
(k0,j) where j∈F

ai,jf(x′i,j).

Define F+ = {j ∈ F : ak0,j > 0 and f(x′i,j) > 0} and F− = {j ∈ F : ak0,j < 0 and f(x′i,j) <
0}. Thus ∑

(k0,j) where j∈F

ai,jf(x′i,j) ≤
∑

(k0,j) where j∈F+

ai,jf(x′i,j) +
∑

(k0,j) where j∈F−

ai,jf(x′i,j).

Assume without loss of generality that
∑

(k0,j) where j∈F ai,jf(x′i,j) ≤ 2
∑

(k0,j) where j∈F+
ai,jf(x′i,j).

We may also assume F 6= ∅. Thus

(1)
∑

(k0,j) where j∈F+

ai,jf(x′i,j) ≥
1

2
‖

∑
(k0,j) where j∈F

ai,jx
′
i,j‖ ≥ δ/2.

and so
∑

(k0,j) where j∈F+
f(x′i,j) ≥ δ/2.
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Thus by Lemma 2.7 there is a g ∈ Ba(x∗) so that∑
(k0,j) where j∈F+

g(x′i,j) ≥ (1− ε)
∑

(k0,j) where j∈F+

f(x′i,j),

and ∑
(i,j)∈J

|g(x′i,j)| ≤ ε
∑

(k0,j) where j∈F+

f(x′i,j)

where J = {(i, j) ∈ I : (i, j) ≤r` max(supp ((ai,j)) and either (i, j) 6= (k0, j) for any j ∈
F+ or g(x′i,j) < 0}. Thus

‖
∑

ai,jx
′
i,j‖ ≥ g

(∑
ai,jx

′
i,j

)
≥
∑
j∈F+

ak0,jg(x′k0,j)−
∑

(i,j)∈J

|ai,j||g(x′i,j)|

≥ δ
∑
j∈F+

g(x′k0,j)−
∑

(i,j)∈J

|g(x′i,j)|

≥ δ(1− ε)
∑
j∈F+

f(x′k0,j)− ε
∑
j∈F+

f(x′k0,j)

= (δ(1− δ/4)− δ/4)
∑
j∈F+

f(x′k0,j) since ε = δ/4

= (δ/2 +
δ − δ2

4
)
∑
j∈F+

f(x′k0,j) ≥ δ/2
∑
j∈F+

f(x′k0,j) since ε = δ/4

Since |ai,j| ≤ 1 and by (1) we have∑
j∈F+

ak0,jf(x′i,j) ≥ ‖
∑
j∈F

ako,jx
′
k0,j
‖ ≥ δ/2

So
∑

j∈F+
f(x′i,j) ≥ δ/2. Therefore

‖
∑
j∈F

ako,jx
′
k0,j
‖ ≥ 2

∑
j∈F

f(x′k0,j) ≥ 2(
2

δ
)‖
∑

ai,jx
′
i,j‖ =

4

δ
‖
∑

ai,jx
′
i,j‖.

�
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