Math 3160 - Test 2.5 Review

Anything previous material can be on the exam, plus the following problems.

1 Change of Basis Matrix

- 1. Let $B = \{(1,0), (0,1)\}, B_1 = \{(-1,1), (2,3)\}$ and $B_2 = \{(1,-1), (1,1)\}.$
 - (a) Find the change of basis matrices for $P_{B_1 \to B_2}$ and $P_{B_2 \to B_1}$.
 - (b) Find the coordinates of the point (4,6) (given in the standard basis) relative to the bases B_1 and B_2 .
 - (c) Find the change of basis matrices for $P_{B\to B_2}$ and $P_{B_2\to B}$.
 - (d) Find the coordinates of the point (2, -4) (given in the standard basis) relative to the bases B and B_2 . Graph this point the two separate coordinate axes B and B_2 .

2 Eigenvalues, eigenvectors and Diagonalization

2. Find the eigenvalues and eigenvetors for the following matrices

$$A = \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \text{ and } D = \begin{bmatrix} 4 & 0 & 0 \\ 3 & 2 & 1 \\ 0 & 4 & 0 \end{bmatrix}$$

3. Find the eigenvalues and eigenvetors for the following matrices (may have complex numbers in answer).

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}, \text{ and } B = \begin{bmatrix} 3 & 3 & 0 \\ 0 & 5 & 0 \\ 1 & 0 & 5 \end{bmatrix}.$$

4. Can the following matrices be diagonalized? State why? If it can be diagonalized, do it. That is, if it is diagonalizable compute D and P.

$$A = \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \text{ and } D = \begin{bmatrix} 4 & 0 & 0 \\ 3 & 2 & 1 \\ 0 & 4 & 0 \end{bmatrix}.$$

3 Inner Product Spaces

5. Let $f_1(x) = x^2$, $f_2(x) = 1 + x$, $f_3(x) = 3 - 4x$. Let

$$\langle f,g\rangle = \int_0^1 fg\,dx.$$

Compute

- (a) $\langle f_1, f_2 \rangle$
- (b) $\langle f_1, f_1 \rangle$
- (c) $||f_1||$
- (d) Find the angle between f_1 and f_2 .
- (e) Find the angle between f_1 and f_3 .

6. Let $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = x^2$. Let

$$\langle f,g\rangle = \int_{-1}^{1} fg \, dx.$$

Compute

- (a) $\langle f_1, f_2 \rangle$
- (b) $\langle f_1, f_1 \rangle$
- (c) $||f_1||$
- (d) Find the angle between f_1 and f_2 .
- (e) Find the angle between f_1 and f_3 .

7. Let $f_1(x) = 1$, and $f_2(x) = x^2$. Let

$$\langle f,g\rangle = \int_0^1 fg\,dx.$$

Compute

- (a) $\operatorname{Proj}_{f_1} f_2$
- (b) $\mathbf{a} = \operatorname{Proj}_{f_1} f_2$. Compute $\mathbf{b} = f_2 \mathbf{a}$. What did we call \mathbf{a} and \mathbf{b} earlier in the semester?
- (c) Compute the angle between \mathbf{a} and \mathbf{b} .

4 Gram-Schmidt Orthogonalizations

- 8. Let $\mathbf{v_1} = (1, 0, -1)$, $\mathbf{v_2} = (0, 0, -1)$, and $\mathbf{v_3} = (0, 1, 1)$ in the usual Euclidean \mathbb{R}^3 . Use GS to orthonormalize this set of vectors.
- 9. Let $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = x^2$. Let

$$\langle f,g\rangle = \int_0^1 fg\,dx.$$

Use GS to orthonormalize this set of vectors.

5 Markov Chains

- 10. For the following defined matrices which are stochastic. $A = \begin{bmatrix} .1 & .9 \\ .1 & .9 \end{bmatrix}$, $B = \begin{bmatrix} .9 & 0 \\ .1 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 0.25 & -1.0 \\ 0.75 & 2.0 \end{bmatrix}$ and $D = \begin{bmatrix} .1 & .2 & .3 & .4 \\ .0 & .4 & .1 & .5 \\ .0 & .4 & .6 & 0 \\ .9 & 0 & 0 & .1 \end{bmatrix}$
- 11. For the following defined markov processes which are regular.

$$A = \begin{bmatrix} .1 & .9 \\ .1 & .9 \end{bmatrix}, B = \begin{bmatrix} .9 & 0 \\ .1 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 0.25 & 1.0 \\ 0.75 & 0.0 \end{bmatrix}$$

12. Find the steady states for the following processes.

- (a) For the transition matrix $A = \begin{bmatrix} .1 & .9 \\ .9 & .1 \end{bmatrix}$. You may be able to guess the answer for this one (but do the work anyway).
- (b) A bike rental company has three locations. A renter can pick up a bike at any location and drop that bike off at any location.
 - A bike picked up at location A has 20% probability of being dropped off at location B and has a 10% probability of being dropped off at location C.
 - A bike picked up at location B has 30% probability of being dropped off at location A and has a 0% probability of being dropped off at location C.
 - A bike picked up at location C has 10% probability of being dropped off at location B and has a 40% probability of being dropped off at location A.

6 Inverse Matrices mod 26

- 13. Reduce the following mod 26.
 - (a) $33 \mod 26$
 - (b) $-33 \mod 26$
 - (c) $100 \mod 26$
 - (d) 1000 mod 26
- 14. Solve for $x \mod 26$.
 - (a) $x + 33 \equiv 7 \mod 26$
 - (b) $3x \equiv 1 \mod 26$
 - (c) $2x \equiv 1 \mod 26$
- 15. Find the inverse of the following matrices mod 26. If not possible, state why.

$$A = \begin{bmatrix} -1 & 2\\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 9 & 2\\ 3 & 1 \end{bmatrix}, C = \begin{bmatrix} -2 & 1\\ 4 & -2 \end{bmatrix}, \text{ and } D = \begin{bmatrix} 4 & -1\\ 5 & 2 \end{bmatrix}.$$