Math 3160 - Test 1

Name:_____

1. Solve the following SLE using row reduction. Reduce to RREF and interpret.

 $\begin{cases} x_1 & -2x_2 & +2x_3 & +4x_4 & = 3\\ & x_2 & -x_3 & +x_4 & = -2\\ x_1 & & +6x_4 & = -1 \end{cases}$

2. Solve the following SLE using row reduction. Reduce to RREF and interpret.

 $\begin{cases} x_1 & -2x_2 & +2x_3 & +4x_4 & = 3\\ & x_2 & -x_3 & +x_4 & = 0\\ x_1 & & +6x_4 & = 0 \end{cases}$

3. Solve the following SLE using row reduction. Reduce to RREF and interpret.

 $\begin{cases} 2x_1 & -2x_2 & +4x_3 & = 2\\ & x_3 & = 1\\ & x_2 & +2x_3 & = 0 \end{cases}$

4. Solve the following SLE by setting up problem as a matrix problem and by finding an inverse matrix. You must clearly identify A, \mathbf{x} , and \mathbf{b} .

ſ	x_1	$-x_2$	$+4x_{3}$	= 5
{			$3x_3$	= 6
l	$2x_1$		$+7x_{3}$	= 11

5. Solve the following SLE using cramer's Rule. Clearly identify A, A_1 , and A_2 .

$$\begin{cases} x_1 & -x_2 &= 5\\ 2x_1 & x_2 &= 6 \end{cases}$$

- 6. Write the matrix for the following transformations described below.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ where the plane is reflected about the *x*-axis.
 - (b) $T : \mathbb{R}^2 \to \mathbb{R}^2$ where the plane is reflected about the *x*-axis and then reflected about the *y*-axis.
 - (c) $T:\mathbb{R}^2\to\mathbb{R}^2$ where the plane is rotated by 60 degrees counter-clockwise.

- 7. Let $\mathbf{v} = (1, 3, 4)$ and $\mathbf{w} = (1, -1, 0)$ be vectors in \mathbb{R}^3 . and let P(1, 1, 1) and Q(0, -4, 0) be two points in \mathbb{R}^3 .
 - (a) Find the vector \overrightarrow{PQ} and a unit vector in the same direction as \overrightarrow{PQ} .
 - (b) Find a vector that is parallel to ${\bf v}$ and unit.
 - (c) Compute $||2\mathbf{v} \mathbf{w}||$.