Name:_____

1. Find the limit and prove your answer.

$$\lim_{n \to \infty} \frac{3n+2}{5n+4}$$

- 2. Prove $2^n > n$ for all $n \in \mathbb{N}$.
- 3. Do one of the following.
 - For the following relation defined on $\mathbb Z$

 $a \sim b$ if and only if 3|a+2b

prove \sim is an equivalence relation.

• For the following relation defined on $\mathbb Z$

 $a \sim b$ if and only if 3|a+2b

prove addition is well defined.

- 4. Do one of the following.
 - Prove $f: (0,2) \to (-3,5)$ where $f(x) = 2x^2 3$ is a bijection.
 - Select one and prove $\mathbb{Q} \sim \mathbb{N}$, $\mathbb{Z} \sim \mathbb{N}$, or $\mathbb{R} \not\sim \mathbb{N}$.
- 5. Prove: Let $\alpha = \sup(A)$. If $\varepsilon > 0$ then there is some $x \in A$ so that $\alpha \varepsilon < x \leq \alpha$.
- 6. Solve $z^4 = 1$ where $z \in \mathbb{C}$.
- 7. Prove if a sequence is convergent then it is bounded.

ec 2. Let $A \subseteq \mathbb{R}$, $A \neq$ and A is bounded above. So the sup(A) exists. Say $\alpha = sup(A)$. Show if $\alpha \notin A$, there exists an increasing sequence, (a_n) in A so that

 $\lim a_n = \alpha$

$$a_n = \frac{2a_n + 1}{a_n + 1}, a_1 = 1.$$

 So

$$a_2 = \frac{2a_1 + 1}{a_1 + 1} = \frac{2(1) + 1}{(1) + 1} = \frac{3}{2}.$$

- (a) Compute a_3 and a_4 .
- (b) Show that $a_n < a_{n+1}$ for all $n \in \mathbb{N}$. That is, show (a_n) is increasing.
- (c) Since (a_n) is increasing we have $a_1 = 1 < a_2 < \cdots$. That is $1 < a_n$ for all $n \in \mathbb{N}$. Show $a_n < 10$ for all $n \in \mathbb{N}$.

For both problems I used induction and the fact that

$$a_n = \frac{2a_n + 1}{a_n + 1} = 2 - \frac{1}{a_n + 1}.$$

ec 1. Define the sequence as follows

$$a_n = \frac{2a_n + 1}{a_n + 1}, a_1 = 1.$$

 So

$$a_2 = \frac{2a_1 + 1}{a_1 + 1} = \frac{2(1) + 1}{(1) + 1} = \frac{3}{2}.$$

- (a) Compute a_3 and a_4 .
- (b) Show that $a_n < a_{n+1}$ for all $n \in \mathbb{N}$. That is, show (a_n) is increasing.
- (c) Since (a_n) is increasing we have $a_1 = 1 < a_2 < \cdots$. That is $1 < a_n$ for all $n \in \mathbb{N}$. Show $a_n < 10$ for all $n \in \mathbb{N}$.

For both problems I used induction and the fact that

$$a_n = \frac{2a_n + 1}{a_n + 1} = 2 - \frac{1}{a_n + 1}.$$