Math 3160 - Test 1 plus plus - Vectors & Matrices

Name:_

No calculators and show all work.

- 1. Let $P_1(1,0,0)$, $P_2(2,2,0)$ and $P_3(0,1,1)$ be points in \mathbb{R}^3 .
 - (a) What is the parametric equation of the plane containing P_1 , P_2 and P_3 ?
 - (b) What is the point-normal equation of the plane containing P_1 , P_2 and P_3 ?
 - (c) What is area of the triangle formed by the points P_1 , P_2 and P_3 ??
- 2. Let $\mathbf{v} = (1, 2, 3)$ and let $\mathbf{w} = (3, -4, 0)$. Compute the following.
 - (a) Find a single vector perpendicular to \mathbf{v} .
 - (b) Find all vectors perpendicular to \mathbf{v} .
 - (c) Find a single vector perpendicular to both \mathbf{v} and \mathbf{w} .
- 3. Compute the following. Let

$$A = \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix}, \text{ and } A = \begin{bmatrix} -1 & -1 & 0 \\ 0 & 3 & 1 \\ 0 & 4 & 1 \end{bmatrix}.$$

- (a) The determinant of A and B.
- (b) The inverses of A and B.
- (c) $A^2 = AA$ and B^2 .

4. For the matrix A from Problem 3, find all points so that $A\mathbf{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

where $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$.

5. For the matrix A from Problem 3, find all points so that $A\mathbf{x} = \begin{bmatrix} 1\\2 \end{bmatrix}$.

where
$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$