Name:

To receive credit you must show your work.

- 1. Prove W is a subspace of V.
 - (a) $W = \{(x, y, z) | x y = 0\} \in V = \mathbb{R}^3$
 - (b) $W = \{(t, 3t, 0) | t \in \mathbb{R}\} \in V = \mathbb{R}^3$
 - (c) $W = \{(u t, t, 3t, u) | u, t \in \mathbb{R}\} \in V = \mathbb{R}^4$
- 2. Prove W is not a subspace of V.
 - (a) $W = \{(x, y, z) | x y = 7\} \in V = \mathbb{R}^3$
 - (b) $W = \{(t, 3t, 2) | t \in \mathbb{R}\} \in V = \mathbb{R}^3$
- 3. Let $\mathbf{v_1} = (2, 1, 0)$, $\mathbf{v_2} = (1, 0, 2)$, and $\mathbf{v_3} = (3, 3, -6)$.
 - (a) Is $\mathbf{v} = (3, 3, 3)$ in the span of $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$? If yes, what is a linear combination to demonstrate this?
 - (b) Is $\mathbf{v} = (1, 1, -2)$ in the span of $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$? If yes, what is a linear combination to demonstrate this?
 - (c) Does $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ span \mathbb{R}^3 ? Why or why not?
- 4. Let $\mathbf{v_1} = (2, 1, 0), \mathbf{v_2} = (1, 0, 1), \text{ and } \mathbf{v_3} = (1, 0, 0).$
 - (a) Is $\mathbf{v} = (3,3,3)$ in the span of $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$? If yes, what is a linear combination to demonstrate this?
 - (b) Is $\mathbf{v} = (1, 1, -2)$ in the span of $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$? If yes, what is a linear combination to demonstrate this?
 - (c) Does $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ span \mathbb{R}^3 ? Why or why not?
- 5. Let $\mathbf{v_1} = (2, 1, 0)$, $\mathbf{v_2} = (1, 0, 2)$, and $\mathbf{v_3} = (3, 3, -6)$. Is this set of vectors linearally independent? If it is show why, if it is not show a linear combination that is the zero vector.
- 6. Let $\mathbf{v_1} = (2, 1, 0)$, $\mathbf{v_2} = (1, 0, 1)$, and $\mathbf{v_3} = (1, 0, 0)$. Is this set of vectors linearally independent? If it is show why, if it is not show a linear combination that is the zero vector.
- 7. Let $\mathbf{v_1} = (2, 1, 0)$, $\mathbf{v_2} = (1, 0, 2)$, and $\mathbf{v_3} = (3, 3, -6)$. Find a basis for the span of this set.

8. Let $\mathbf{v_1} = (2, 1, 0), \mathbf{v_2} = (1, 0, 1)$, and $\mathbf{v_3} = (1, 0, 0)$. Find a basis for the span of this set.