Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page.

Name: _

1. To answer the following questions use the function given in polar coordinates

 $r = 2 + 2\sin(\theta)$

- (a) Graph.
- (b) Find the tangent line to the function at $t = \pi/3$.

- 2. Consider points *A*(0, 0, 2), *B*(-1, 1, 5), and *C*(0, 1, 0).
 - (a) Find the area of parallelogram ABCD and find the area of triangle ABC.
 - (b) Find the standard equation of the plane containg the three points *A*, *B*, and *C*.
 - (c) Find the parametric equation of the plane containg the three points *A*, *B*, and *C*.

- 3. Let $\mathbf{r}(t) = \langle 3t^2, t^3 \rangle$.
 - (a) What is the velocity, acceleration of this particle.
 - (b) Compute T(t).
 - (c) Graph v(1), and a(1) coming out from the point r(1). What does this tell you?

4. Let $\mathbf{r}(t) = \langle 3\cos(t^3), 5\sin(t^3), 4\cos(t^3) \rangle$. Compute $\mathbf{v}(t)$, $\mathbf{T}(t)$, and $\mathbf{N}(t)$.

5. For the equation $z = 3x^2 + y^2$, graph the traces at z = -1, 0, 1, 2, 3 and at x = 0. Then graph the equation.

6. Compute (using many paths) $\lim_{(x,y)\to(0,0)} \frac{x^2 - 3xy + y^2}{x^2 + y^2}$

- 7. Let $f(x, y, z) = 4x^2 e^{y^2}$. Let $\nabla = \langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \rangle$. Compute the following.
 - (a) Compute $f_x(x, y, z)$ and $f_y(x, y, z)$.
 - (b) Compute
 - (c) Compute

$$\nabla \cdot \langle 4x^2, e^{y^2}, xz^2 \rangle.$$

 $\nabla f(x, y, z)$