Name:

MA 3330: Worksheet 1

1. For the function below find the tangent plane at the point P(2, 1).

$$f(x,y) = 3x^2y - e^{x^2 - y - 3}$$

2. For the function below use the tangent plane to estimate f(1.1, 2.9).

$$f(x,y) = x^3 - y^3$$

3. For the function below use the tangent plane to estimate f(1.1, 0.9, 2.9).

$$f(x, y, z) = \sin(x^2 - y^2) - z^3$$

4. For this problem consider the function $f(x,y) = x^2 + y^2$ and the path given by

$$\mathbf{r}(t) = \langle t\cos(t), t\sin(t) \rangle$$

- (a) Graph the function f.
- (b) Graph the path \mathbf{r} in \mathbb{R}^2 .
- (c) Graph the path \mathbf{r} as it traces the function f.
- (d) Use the chain rule to compute $f_t(t)$ for f(x, y) and the path given.
- 5. For this problem consider the function $f(x, y, z) = 5xy y^2$ and the plane x 2y + z = 7.
 - (a) Find the parametric equation for the plane x 2y + z = 7.
 - (b) Use the chain rule to compute $f_s(s,t)$ and $f_t(s,t)$ for $f(x,y,z) = x^2 + y^2$ over the plane x 2y = 7
- 6. Find the extremma. Use either technique.
 - (a) $f(x,y) = x^4 + y^4 16xy$
 - (b) f(x,y) = 2xy + 3x + 4y
 - (c) $f(x,y) = x^3 + y^3 300x 75y 3$
 - (d) Minimize $f(x, y) = x^2 + y^2$ on the hyperbola xy = 1.
 - (e) Maximize f(x, y, z) = 2x + 3y + 5z on the sphere $x^2 + y^2 + z^2 = 1$.