Math for Deep Learning - Homework 03

Name:

- 1. Roll a fair four sided die twice.
 - (a) What is the sample space?
 - (b) What is the probability of getting at least one 3?
 - (c) What is the probability of getting a sum of 3?
 - (d) Let Y be th RV (random variable) equal to the count of the number of threes of the two rolls. Write down its pdf.
 - (e) Let X be th RV equal to the sum of the two rolls. Write down its pmf.
 - (f) Let X be th RV equal to the sum of the two rolls. Write down its pmf.
 - (g) Compute P(X = 3), P(Y = 2) and P(X = 3andY = 2).
 - (h) Are X and Y independent?
- 2. Let $f(x) = C(x^2 + 1)$ over [0, 3].
 - (a) Assume f is a pdf for a RV X. What is C?
 - (b) Compute the P(X < 2), and P(X > 2)
- 3. Let $f(x,y) = C(yx^2 + 1)$ where $x \in [0,3]$ and $y \in [0,3]$.
 - (a) Assume f is a pdf for a RV X. What is C?
 - (b) Compute the P(X < 2), P(Y > 2), and P(X < 2 and Y > 2).
 - (c) Are X and Y independent?
- 4. Consider a set of 1000 emails and
 - V be the event that an email has the word viagara in it
 - S be the event that an email is spam

We have the following sample data: n = 1000 the total nuber of emails, n(V) = 12, n(S) = 203, and $n(V \cap S) = 11$

- (a) What is P(S), P(V) and $P(V \cap S)$?
- (b) Compute P(S|V) and $P(S|V^C)$?
- (c) Use Bayes to compute P(V|S) and $P(V|S^C)$?

- 5. Roll two fair 4-sided dice. Let X be the RV to represent the sum on the dice, and let Y be the RV that is the difference on the dice.
 - (a) What is the joint pmf?
 - (b) compute the marginal pmfs.
 - (c) What is the Pr(X+Y;2)?
- 6. Use the pdf $f(x, y) = \frac{6x+2y}{7}$ for $0 \le x \le 1$ and $0 \le y \le 1$.
 - (a) What is the joint pdf?
 - (b) compute the marginal pdfs.
 - (c) What is the Pr(0 < X < 0.5, 0.5 < Y < 1)?
 - (d) What is the Pr(X + Y < 1)?¹
- 7. Are X and Y from Question 5 independent?
- 8. Are X and Y from Question 6 independent?
- 9. Compute covariance and correlation from Question 5.
- 10. Compute covariance and correlation from Question 5.
- 11. MLE Maximum Likelihood estimator question
- 12. Bayesian estimation question

¹May be challenging, we didnot do an example like this.