Math 6250: Final Exam Review

1 Limits of Sequences

- 1. Prove the following
 - $\lim_{n\to\infty}\frac{1}{3n}=0$
 - $\lim_{n \to \infty} \frac{3n^2 + 1}{4n^2 7} = \frac{3}{4}$
- 2. Assume $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, and $k \in \mathbb{R}$. Prove the following.
 - $\lim_{n\to\infty} k = k$
 - $\lim_{n\to\infty} ka_n = ka$
 - $\lim_{n\to\infty} a_n + b_n = a + b$
 - $\lim_{n\to\infty} a_n b_n = ab$
- 3. Prove if (a_n) converges then (a_n) is bounded.
- 4. For the following questions use the Monotone Convergence Theorem and the sequence

$$a_1 = 1$$
 and $a_{n+1} = \sqrt{a_n + 1}$.

- Write the first four terms of the series.
- Show (a_n) is monotone.
- Show (a_n) is bounded.
- Prove (a_n) is convergent.
- What is the limit of (a_n) .

2 Limits of Functions

- 5. Prove the following (use $\varepsilon \delta$ definition).
 - (a) $\lim_{x\to -2} 3x 1 = -7$
 - (b) $\lim_{x \to -2} x^2 = 4$
 - (c) $\lim_{x \to 4} \frac{1}{x} = \frac{1}{4}$

- (d) $\lim_{x\to 9} \sqrt{x} = 3$
- 6. Prove the following
 - (a) $f(x) = x^2$ is continuous at x = -2.
 - (b) $f(x) = x^2$ is continuous.
 - (c) $f(x) = \sqrt{x}$ is continuous at x = 0.
 - (d) $f(x) = \sqrt{x}$ is continuous at x = 4.
 - (e) $f(x) = \sqrt{x}$ is continuous.
 - (f) $f(x) = \frac{1}{x}$ is continuous at x = 3.
 - (g) $f(x) = \frac{1}{x}$ is continuous.
- 7. Use the $\varepsilon \delta$ definition to prove
 - (a) If $\lim_{x\to c} f(x) = F$ and $k \in \mathbb{R}$ then $_{x\to c} k f(x) = kF$
 - (b) If $\lim_{x\to c} f(x) = F$ and $\lim_{x\to c} g(x) = G$ then $\lim_{x\to c} f(x) + g(x) = F + G$
 - (c) If $\lim_{x\to c} f(x) = F$ and $\lim_{x\to c} g(x) = G$ then $\lim_{x\to c} f(x)g(x) = FG$
- 8. Use the fact that

$$\lim_{a \to 0} \frac{\sin(a)}{a} = 1$$

to solve the following (do not use $\varepsilon - \delta$):

- (a) $\lim_{x \to 0} \frac{1 \cos(x)}{x}$
- (b) $\lim_{x \to 0} \frac{1 \cos(x)}{x^2}$
- (c) $\lim_{x \to 0} \frac{\sin^2(x)}{x^2}$
- (d) $\lim_{h\to 0} \frac{\sin(x+h)-\sin(x)}{h}$. Hint use The following identity.

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

 or

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

3 Continuity

9. Show the following functions are continuus (or not).

(a)
$$f(x) = x^{3}$$
 at $x = c$
(b) $f(x) = \frac{1}{x}$ at $x = c$
(c) $f(x) = \frac{x^{2} + x}{|x|}$ at $x = 0$
(d) $f(x) = \frac{x^{2} + x}{|x|}$ at $x = 0$
(e) $f(x) = \frac{x^{3} + x^{2}}{|x|}$ at $x = 0$
(f) $f(x) = \frac{x^{4} + x^{2}}{|x|}$ at $x = 0$
(g) $f(x) = \begin{cases} x \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$
(h) $f(x) = \begin{cases} x \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$
(i) $f(x) = \begin{cases} \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$
(j) $f(x) = \begin{cases} x^{2} \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$
(k) $f(x) = \begin{cases} x^{3} \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$

4 Derivatives

- 10. Prove if f is differentiable at x = c then f is continuous at x = c.
- 11. Prove if f is differentiable at x = c and g is differentiable at x = c then fg is continuous at x = c.
- 12. From the definition compute the derivatives for the following functions.
 - (a) $f(x) = x^3$ at x = c(b) $f(x) = \frac{1}{x}$ at x = c(c) $f(x) = \frac{x^2 + x}{|x|}$ at x = 0(d) $f(x) = \frac{x^2 + x}{|x|}$ at x = 0

(e)
$$f(x) = \frac{x^3 + x^2}{|x|}$$
 at $x = 0$
(f) $f(x) = \frac{x^4 + x^2}{|x|}$ at $x = 0$
(g) $f(x) = \begin{cases} x \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$
(h) $f(x) = \begin{cases} x \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$
(i) $f(x) = \begin{cases} \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$
(j) $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$
(k) $f(x) = \begin{cases} x^3 \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$

5 Taylor and other series

- 13. Be able to prove the harmonic series diverges.
- 14. Be able to compute Taylor polynomials.
- 15. be able to replicate the proof of the Basel problem (in pieces).

6 Also Remember

6.1 Injective, Surjective

16. Define $f:(0,\infty) \to (0,1)$ by $f(x) = \frac{x}{1+x}$.

- (a) Graph this function.
- (b) Prove f is injective.
- (c) Prove f is surjective.

6.2 Cardinality

- 17. What is the definition A and B have the same cardinality.
- 18. What is the definition A is countable.

- 19. List five sets which are countably infinite. List three sets that are uncountable.
- 20. Show the following sets have the same cardinality
 - (a) \mathbb{N} and \mathbb{Z}
 - (b) \mathbb{N} and \mathbb{Q}
 - (c) $(0,\infty) \sim (0,1).$
 - (d) $(2,4] \sim [3,7).$