MATH 3330 Test 1 Version 2

Name:_____

1. Find the tangent line for the function given parametrically as

$$x = t^2 + t^4 + 3, y = t^3 + t + 4,$$

at t = 1.

2. Graph $r = \sin(2\theta)$

3. Find the area inside of the spiral $r = \sqrt{e^{\theta} + 1}$ from $\theta = 0$ to $\theta = \pi$.

4. Consider the lines

$$L_1: x = 2 + t, y = t - 1, z = 3$$

 $L_2: x = 4t, y = 2 - 4t, z = 3t$

and the plane

$$P_1: 2x + y - z = 14$$

- (a) Are the lines L1 and L2 parallel? Why or why not?
- (b) Find the intersecting point between L1 and plane P1. State your point as (x, y, z).
- (c) What is the angle between L1 and plane P1?

- 5. Define the three points P(1, 2, 3), Q(4, 5, 6) and R(0, 5, 6).
 - (a) Find the normal equation of the plane that contains P, Q and R.
 - (b) What is the area of the triangle with vertices P, Q and R.

6. Graph the level curves z = -1, 0, 1, 2 and the level curve x = 0. Also graph the function in \mathbb{R}^3 .

$$z = \frac{x^2}{4} + y^2$$

7. Do **one** of the following problems

- For the specific vectors $\mathbf{v} = \langle 1, 2, 3 \rangle$ and $\mathbf{w} = \langle 1, -2, 3 \rangle$, find
 - the vectors $\mathbf{v} + \mathbf{w}$ and $\mathbf{v} \mathbf{w}$,
 - find the area in the parallelogram formed by $\mathbf{v} + \mathbf{w}$ and $\mathbf{v} \mathbf{w}.$
 - Find the area in the parallelogram formed by ${\bf v}$ and ${\bf w}.$
 - Conjecture something about the two previous answers.

• For the general vectors ${\bf v}$ and ${\bf w}$ in $\mathbb{R}^3,$ prove

•

$$(\mathbf{v} + \mathbf{w}) \times (\mathbf{v} - \mathbf{w}) = 2 \mathbf{v} \times \mathbf{w}$$

ec. Take this question home. Write a paper on Piet Hein and the super ellipse. Due Monday Oct 17th.