MATH 3330 Practice Test 1

1 Parametric Equations

- 1. Convert to parametric
 - (a) y = x + 3
 - (b) $y = x^2 + 3$
 - (c) $y^2 + x = 3$
 - (d) $y^2 + x^2 = 3$
 - (e) $\frac{y^2}{4} + \frac{x^2}{9} = 1$
- 2. Convert to rectangular
 - (a) x = t 3, y = t + 3
 - (b) $x = t^2, y = t^3$
 - (c) $x = 3\cos(t), y = 3\sin(t)$
 - (d) $x = \cos(t), y = 3\sin(t)$
- 3. Graph (without converting to rectangular).
 - (a) x = t 1, y = 2t + 3
 - (b) $x = t^2, y = t 1$
 - (c) $x = 3\cos(t), y = 3\sin(t)$
 - (d) $x = t \cos(t), y = t \sin(t)$
 - (e) x = t 1, y = 2t + 3 for $0 \le t \le 2$. Label the points where t = 0, t = 1, t = 2.
- 4. Find the equation of the tangent line to the function

$$x = t^4 + t^2 + 2t, \ y = t^3 + t + 1$$

given parametrically at t = 1.

5. Find the area under the curve

$$x = t^4 + t^2, \ y = t^3 + 1$$

given parametrically from t = 0 to t = 2.

6. Find the arc length for the function

$$x = 3t + 1, y = t^{3/2}$$

given parametrically from t = 0 to t = 2.

7. Find the arc length for the function

$$x = 4\cos(t), \ y = 4\sin(t)$$

given parametrically from t = 0 to $t = \pi$.

8. Find the arc length for

$$x = \cos(t^2), \ y = \sin(t^2)$$

given parametrically from t = 0 to $t = \pi$.

2 Polar Coordinates

- 9. Graph the following
 - (a) $r = 3\cos(\theta)$
 - (b) $r = 3\cos(\theta) + 2$
 - (c) $r = 4\sin(\theta)$
 - (d) $r = \theta$
- 10. Covert the following to rectangular coordinates.
 - (a) $r = 3\cos(\theta)$
 - (b) $r = 3\cos(\theta) + 2$
 - (c) $r = 4\sin(\theta)$
 - (d) $r = \theta$
 - (e) r = 2
 - (f) $r = 2\cos(\theta) 3$
 - (g) $r = 2\cos(2\theta)$
 - (h) $r = 2\sin(2\theta)$
- 11. Covert the following given in rectangular coordinates into polar coordinates.

Figure 1: I have graphed $r^2 = 2\cos(\theta)$ from $\theta = 0$ to $\theta = \pi/2$.

- (a) $y = x^2$ (b) $x^2 + y^2 = 4$ (c) $y = \sqrt{3}x$ (d) $(x^2 + y^2)^2 + 4x(x^2 + y^2) - 4y^2 = 0$
- 12. Graph the each region described below. Also compute the area of that region.
 - (a) Inside r = 2 from $\theta = 0$ to $\theta = \pi/4$.
 - (b) Inside $r^2 = 2\cos(\theta)$ from $\theta = 0$ to $\theta = \pi/4$.
 - (c) Inside $r = 2\cos(\theta)$ from $\theta = 0$ to $\theta = \pi/4$.
 - (d) Inside $r = 2\cos(\theta)$ and inside r = 1.
 - (e) Inside $r = 2\cos(\theta)$ and outside r = 1.
 - (f) Inside $r = 2\cos(3\theta)$ (a three petaled rose).

3 Vectors

- 13. Define the three points P(1,0,2), Q(-1,1,0) and R(1,2,2) and the vectors $\mathbf{v} = \langle 1, 2, 2 \rangle$, $\mathbf{w} = \langle 1, 2, 3 \rangle$ and $\mathbf{u} = \langle 0, 0, 1 \rangle$.
 - (a) Find a unit vector parallel to \vec{PQ} .
 - (b) Find the equation of a line that contains P and R. Find both the parametric and the vector equation.

- (c) Find the equation of a plane that contains P and R. Find all three forms from class: the parametric, the vector equation and the normal equation.
- (d) Find the angle between the vectors \mathbf{v} and \mathbf{w} .
- (e) Find the area of the parallelogram formed by vectors \mathbf{v} and \mathbf{w} .
- (f) Find the volume of the parallelepiped formed by vectors v, w and u.
- 14. Graph the parallelogram formed by the following four points: A(0,0,0), B(2,3,0) C(1,4,-1), and D(3,7,-1). Find the area of the parallelogram.
- 15. Consider the three lines

$$L_1 : x = 2t, y = 3 - 4t, z = 2 + 6t$$
$$L_2 : x = -t, y = 3 + 2t, z = 2 - 3t$$
$$L_3 : x = 2, y = 2t - 5, z = 6 + t$$

and the two planes

$$P_1: x - y = 14$$
$$P_2: x + y - 4z = 0$$

- (a) Are the lines L_1 and L_2 parallel? Why or why not?
- (b) Are the lines L_1 and L_3 parallel? Why or why not?
- (c) Find the angle between the line L_2 and the plane P_1 .
- (d) Find the angle between the plane P_1 and the plane P_2 .
- (e) Where do the lines L_3 and L_2 intersect (if they do)? Show this.
- (f) Where do the lines L_3 and L_1 intersect (if they do)? Show this.
- (g) Where does the line L_1 intersect plane P_1 (if they do)? Show this.
- (h) Find a parametric form for the plane P_1 .
- (i) Find an equation of the plane formed by the intersection of lines L_1 and L_3 .
- 16. Graph the following. Graph the level curves and the entire function.

(a)
$$z^2 = x^2 + y^2$$

- (b) $z = x^{2} + y^{2}$ (c) $z^{3} = x^{2} + y^{2}$ (d) $z = x^{2} - y^{2}$ (e) $x^{2} + y^{2} + z^{2} = 2$
- 17. Graph the equation given in cylindrial coordinates.

$$r = 3\cos(\theta)$$

18. Graph the equation given in cylindrial coordinates.

$$r = zcos(\theta)$$

19. Graph the equations given in spherical coordinates.

(a)	$\phi = \pi/4$
(b)	$\rho = 2$
(c)	$\theta = \pi/4$

4 Vector Valued Functions

- 20. Let $\mathbf{r}(t) = \langle t^2 t, t^3 3t^2 + 3 \rangle$
 - (a) Find the position, velocity and acceleration of the particle at time t = 2.
 - (b) Graph the position, velocity and acceleration appropriately.
- 21. Let $\mathbf{r}(t) = \langle \sin(e^{-t}), \cos(e^{-t}) \rangle$
 - (a) Find the speed function

$$\frac{ds}{dt} = \|\mathbf{r}'(t)\|$$

- (b) Compute the arc length from t = 0 to t = 1.
- (c) Compute the arc length from t = 0 to $t = \infty$.

- (d) What is the graph of $\mathbf{r}(t)$?
- 22. Let $\mathbf{r}(t) = \langle e^{-t} \sin(t), e^{-t} \cos(t) \rangle$
 - (a) Find the speed function

$$\frac{ds}{dt} = \|\mathbf{r}'(t)\|$$

- (b) Compute the arc length from t = 0 to t = 1.
- (c) Compute the arc length from t = 0 to $t = \infty$.
- (d) What is the graph of $\mathbf{r}(t)$?
- 23. Compute the following limits if they exist. If not show why.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{x^2 + y^2 + 1}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{1 - \cos(x^2 + y^2)}{x^2 + y^2}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + xy + y^2}{x^2 + y^2}$$

- 24. Let $f(x,y) = x^2 + y^2$. Consider the points P(0,2) and Q(1,2).
 - (a) Graph the contour plot. Include z = -1, 0, 1, 2, 3, 4.
 - (b) Compute the $\nabla f(x, y)$.
 - (c) Compute the $\nabla f(P)$ and $\nabla f(Q)$. Also compute their norms.
 - (d) Graph $\nabla f(P)$ and $\nabla f(Q)$ with initial points P and Q respectively.

5 Two easy proofs

25. Prove

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 + 2\mathbf{v} \cdot \mathbf{w}$$

26. Prove

$$\|\mathbf{v}\|^2 \|\mathbf{w}\|^2 = (\mathbf{v} \cdot \mathbf{w})^2 + \|\mathbf{v} \times \mathbf{w}\|^2$$