1 From earlier

- 1. Let $\mathbf{r}(t) \to \mathbb{R} \to \mathbb{R}^3$ be differentiable so that the **r** has a constant norm.
 - (a) Prove that the path **r** and its derivative are perpandicular.
 - (b) Come up with a nonzero example of $\mathbf{r}(t)$.
- 2. Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$.
 - (a) Prove the parallelogram rule

$$|\mathbf{v} + \mathbf{w}||^2 + ||\mathbf{v} - \mathbf{w}||^2 = 2||\mathbf{v}||^2 + 2||\mathbf{w}||^2$$

(b) graph some vectors \mathbf{v} , \mathbf{w} , \mathbf{v} + \mathbf{w} and \mathbf{v} – \mathbf{w} in \mathbb{R}^2 to explain the parallelogram rule.

2 Paths

- 3. Let $\mathbf{r}(t) = \langle t^2 t, t^3 3t^2 + 3 \rangle$
 - (a) Find the position, velocity and acceleration of the particle at time t = 2.
 - (b) Graph the position, velocity and acceleration appropriately.
- 4. Let $\mathbf{r}(t) = \langle \sin(e^{-t}), \cos(e^{-t}) \rangle$
 - (a) Find the speed function

$$\frac{ds}{dt} = \|\mathbf{r}'(t)\|$$

- (b) Compute the arc length from t = 0 to t = 1.
- (c) Compute the arc length from t = 0 to $t = \infty$.
- (d) What is the graph of $\mathbf{r}(t)$?
- 5. Let $\mathbf{r}(t) = \langle e^{-t} \sin(t), e^{-t} \cos(t) \rangle$
 - (a) Find the speed function

$$\frac{ds}{dt} = \|\mathbf{r}'(t)\|$$

- (b) Compute the arc length from t = 0 to t = 1.
- (c) Compute the arc length from t = 0 to $t = \infty$.
- (d) What is the graph of $\mathbf{r}(t)$?

3 Functions of Several Variables

6. Compute the following limits if they exist. If not show why.

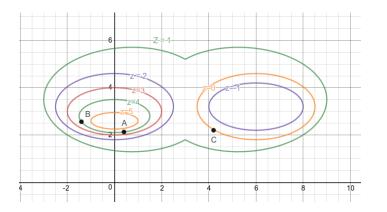
(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{x^2 + y^2 + 1}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{1 - \cos(x^2 + y^2)}{x^2 + y^2}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + xy + y^2}{x^2 + y^2}$$

7. Let $f(x, y) = x^2 + y^2$. Consider the points P(0, 2) and Q(1, 2).

- (a) Graph the contour plot. Include z = -1, 0, 1, 2, 3, 4.
- (b) Compute the $\nabla f(x, y)$
- (c) Compute the $\nabla f(P)$ and $\nabla f(Q)$. Also compute their norms.
- (d) Graph $\nabla f(P)$ and $\nabla f(Q)$ with initial points *P* and *Q* respectively.
- 8. Draw the gradient at each point *A*, *B* and *C*.



- 9. Fill in the blanks.
 - (a) The gradient is the direction of ______ increase.
 - (b) The gradient is ______ to the contour lines.
 - (c) The norm of the gradient is _____.
 - (d) A larger norm of one gradient is _____ graphically.
- 10. Let $f(x, y) = e^{xy^2+2} xy^3 + 2$. Find the tangent plane to f(x, y, z) at the point (-2, 1). Use that plane to estimate f(-2.1, 0.8). Compare to the real value of f(-2.1, 0.8).
- 11. Let $f(x, y, z) = x^2y xy^2 + z^3$. Find the tangent plane (actually a hyperplane) to f(x, y, z) at the point (1, 2, 3)

- 12. Find and classify extremma.
 - (a) $f(x, y) = x^2 xy + y^3$.
 - (b) $f(x, y) = x^2 + 2xy y^4$.
 - (c) f(x, y, z) = x + 3y + z subject to $x^2 + y^2 + z^2 = 1$.
 - (d) $f(x, y, z, w) = x^2 + y^2 + z^2 + w^2$ subject to x + y + z 3w = 4.
 - (e) $f(x, y, z, w) = x \ln(x) + y \ln(y) + z \ln(z)$ subject to x + y + z = 1. In this problem f is called information entropy.

4 Integrals

- 13. $\iint_R x + y \, dA$ over the region defined by x + y = 2 and the coordinate axes.
- 14. $\iint_R xy \, dA$ over the region defined by $y = x^2$ and the line y = x + 1.
- 15. $\iint_R e^{x^2} dA$ over the region defined by y = -x, y = 2x and the vertical line x = 4.
- 16. $\iint_{R} e^{x^2 + y^2} dA$ over the region defined by the portion of the circle $x^2 + y^2 = 4$ in the third quadrant.
- 17. $\iint_{R} \sqrt{\frac{\tan^{-1}(y/x)}{x^{2} + y^{2}}} dA$ over the region defined by the portion of the circle $x^{2} + y^{2} = 4$ above the lines y = -x and y = x.
- 18. Find the volume below the paraboloid $z = 12 x^2 y^2$ and above the *xy*-plane.
- 19. $\iint_{R} \sin(x y) \cos(x + y) \, dA \text{ over the region defined the lines } y = x + 2, \ y = x + 4, \\ y = -x \text{ and } y = -x + 3. \text{ Hint the change of variables is } u = x y \text{ and } v = x + y.$
- 20. $\iint_{R} \frac{x-y}{2x+y} dA$ over the region defined the lines y = x + 2, y = x, y = -2x + 2 and y = -2x + 3.
- 21. $\iint_R xy \, dA$ over the region defined the graphs of xy = 1, xy = 3 and the lines y = x and y = 3x. Hint x = u/v and y = v.
- 22. $\iint_{R} (x y)e^{x^2 y^2} dA$ over the region defined the lines y = x + 2, y = x, y = -x and y = -x + 3.

23. $\iint_{R} e^{x^{2}+4y^{2}} dA$ over the region defined by the portion of the ellipse $\frac{x^{2}}{4} + y^{2} = 1$ in the third quadrant. Hint use the change of variables $x = 2v \cos(u)$ and $x = v \sin(u)$. And note I had $\pi \le u \le \frac{3\pi}{2}$

5 Line Integrals

- 24. $\int_C x \, dx$. Let *C* be line segment from (0, 1) to (3, 2).
- 25. $\int_C xy \, ds$. Let *C* be line segment from (0, 1) to (3, 2).
- 26. $\int_C \langle -x, y \rangle \cdot d\mathbf{r}$. Let *C* be line segment from (0, 1) to (3, 2).
- 27. $\int_C x \, dy$. Let *C* be line segment from (0, 1) to (3, 2).
- 28. $\oint_C xy \, dx$. Let *C* be outside of the triangle traced from (0, 0) to (0, 2) to (1, 2) and then back to (0, 0).
- 29. $\oint_C \langle -x, y \rangle \cdot d\mathbf{r}$. Let *C* be outside of the triangle traced from (0, 0) to (0, 2) to (1, 2) and then back to (0, 0).
- 30. $\oint_C \langle 1, xy \rangle \cdot d\mathbf{r}$. Let *C* be the circle $x^2 + y^2 = 4$ traced counter-clockwise.
- 31. $\oint_C -x + yds$. Let *C* be the circle $x^2 + y^2 = 4$ traced counter-clockwise.

6 Fields and Conservative Fields

- 32. Graph the following fields
 - (a) $\mathbf{F}(x, y) = \langle x, 1 \rangle$.
 - (b) $\mathbf{F}(x, y) = \langle y, x \rangle$.
- 33. Test if fields are conservative. If it is conservative, find its potential function.
 - (a) $\mathbf{F}(x, y) = \langle x, 1 \rangle$.
 - (b) $\mathbf{F}(x, y) = \langle y, x \rangle$.

- (c) $\mathbf{F}(x, y) = \langle xy, xy \rangle$.
- (d) $\mathbf{F}(x, y) = \langle 4x + y + 2, x + 3y^2 \rangle$.
- 34. Use the fact that the field is conservative, and the FTVC to solve the following integrals.
 - (a) $\int_C \langle x^2 + y, x + y^2 \rangle \cdot d\mathbf{r}$ where *C* is the line segment from (-1,0) to (1,0).
 - (b) $\int_C \langle x^2 + y, x + y^2 \rangle \cdot d\mathbf{r}$ where *C* is the upper half of the circle $x^2 + y^2 = 1$ starting at (-1,0) and travelling clockwise to (1,0).
 - (c) $\int_C \langle 6e^{3x} + y^2, 2xy 4\sin(2y) \rangle \cdot d\mathbf{r}$ where *C* is the piesce of the parabola $y = x^2$ that starts at(-1, 1) and to (1, 1).

7 Green's Theorem

- 35. $\oint_C \langle x, -y \rangle \cdot d\mathbf{r}$. Let *C* be outside of the square traced from (0, 0) to (0, 2) to (1, 2) to (1, 0) and then back to (0, 0).
- 36. $\oint_C \langle e^{x^3} xy, e^{y^3} y \rangle \cdot d\mathbf{r}$. Let *C* be outside of the triangle traced from (0, 0) to (0, 2) to (1, 2) and then back to (0, 0).
- 37. $\oint_C \langle \cos(x^2) + y, \cos(y^2) + xy \rangle \cdot d\mathbf{r}.$ Let *C* be the circle $x^2 + y^2 = 4$ traced counter-clockwise.

8 Div/Grad/Curl

38. Define

$$f(x, y, z) = x^3 - yz^2$$
 and $\mathbf{F}(x, y, z) = \langle x^3, yz^2, xy \rangle$.

Compute the following, if possible, and if not possible state why.

- (a) $\operatorname{div}(f(x, y, z))$
- (b) $\operatorname{grad}(f(x, y, z))$
- (c) $\operatorname{curl}(f(x, y, z))$
- (d) div($\mathbf{F}(x, y, z)$)
- (e) grad($\mathbf{F}(x, y, z)$)
- (f) $\operatorname{curl}(\mathbf{F}(x, y, z))$
- (g) $\nabla \cdot \mathbf{F}(x, y, z)$
- (h) $\nabla \times (\nabla \cdot \mathbf{F}(x, y, z))$
- (i) $\nabla \times (\nabla f(x, y, z))$

9 Surface Integrals and Stokes' Theorem

- 39. Some practice parametizing surfaces. Parametize the following
 - (a) The part of the plane x + 4y 3z = 12 above the rectangle $0 \le x \le 4, 0 \le y \le 4$.
 - (b) The part of the paraboloid $z = x^2 + y^2$ above the circle $x^2 + y^2 = 4$.
- 40. For the following exercises, let *S* be the hemisphere $x^2 + y^2 + z^2 = 4$, with $z \ge 0$, and evaluate each surface integral, in the counterclockwise direction.
 - (a) $\iint_S z dS$

(b)
$$\iint_{S} (x-2y) dS$$

- (c) $\iint_{S} (x^{2} + y^{2}) z dS$
- 41. For the following exercises, evaluate

$$\iint \mathbf{F} \cdot \mathbf{N} dS$$

vector field **F**, where **N** is an outward normal vector to surface *S*.

- (a) $\mathbf{F}(x, y, z) = xi + 2yj 3zk$, and *S* is that part of plane 15x 12y + 3z = 6 that lies above unit square $0 \le x \le 1, 0 \le y \le 1$.
- (b) $\mathbf{F}(x, y, z) = xi + yj$, and *S* is the hemisphere $z = \sqrt{1 x^2 y^2} \cdot x$
- (c) $\mathbf{F}(x, y, z) = x^2 i + y^2 j + z^2 k$, and *S* is the portion of plane z = y + 1 that lies inside cylinder $x^2 + y^2 = 1$.

Stokes' Theorem'

$$\int \mathbf{F} \cdot d\mathbf{r} = \iint \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$$

- 42. For the following exercises, without using Stokes' theorem, calculate directly both the flux of curl $\mathbf{F} \cdot \mathbf{N}$ over the given surface and the circulation integral around its boundary, assuming all boundaries are oriented clockwise as viewed from above.
- 43. $\mathbf{F}(x, y, z) = y^2 i + z^2 j + x^2 k$; *S* is the first-octant portion of plane x + y + z = 1.
- 44. **F**(*x*, *y*, *z*) = zi + xj + yk; and *S* is the hemisphere $z = \sqrt{9^2 x^2 y^2}$.
- 45. **F**(*x*, *y*, *z*) = $y^2i + 2xj + 5k$; and *S* is the hemisphere $z = \sqrt{4 x^2 y^2}$.
- 46. **F**(*x*, *y*, *z*) = *zi* + 2*xj* + 3*yk*; S is upper hemisphere $z = \sqrt{9 x^2 y^2}$.
- 47. $\mathbf{F}(x, y, z) = (x + 2z)i + (y x)j + (z y)k$; S is a triangular region with vertices (3, 0, 0), (0, 3/2, 0), and (0, 0, 3).

- 48. For the following exercises, use Stokes' theorem to evaluate $\iint_S \operatorname{curl} \mathbf{F} \cdot \mathbf{N} dS$ for the vector fields and traversed counterclockwise viewed from the origin.
 - (a) $\mathbf{F}(x, y, z) = xyi zj$ and *S* is the surface of the cube $0 \ge x \ge 1, 0 \ge y \ge 1, 0 \ge z \ge 1$, except for the face where z = 0, and using the outward unit normal vector.
 - (b) $\mathbf{F}(x, y, z) = xyi + x^2j + z^2k$; and *S* is the intersection of paraboloid $z = x^2 + y^2$ and plane z = y, and using the outward normal vector.