Math 2320 - Test 3 Version 2 Review

1 Integration

1.
$$\int \frac{1}{x \ln(x)} dx \text{ u-sub}$$

2.
$$\int \frac{1}{x(\ln(x))^2} dx \text{ u-sub}$$

3.
$$\int \tan(x)dx$$

4.
$$\int \sec(x)dx$$

5.
$$\int \frac{1}{\sqrt{x^2 - 4}} dx$$
 hint: trig sub

$$6. \int \frac{2x+2}{x^2+2x} \, dx$$

7.
$$\int \frac{2x^2 + x + 1}{x^3 + x} \, dx$$

8.
$$\int \frac{2x^2 + 3x + 1}{x(x+1)^2} dx$$

$$9. \int_1^\infty \frac{1}{x^2} \, dx$$

10.
$$\int_{1}^{\infty} \frac{1}{x} dx$$

11.
$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$$

2 Limits

$$12. \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

13.
$$\lim_{x \to 0^+} (x)^x$$

14.
$$\lim_{x \to 0^+} (1+x)^{\frac{1}{x}}$$

15.
$$\lim_{x \to 0^+} (1+5x)^{\frac{1}{2x}}$$

3 Series

16.
$$\sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+1}$$

17.
$$\sum_{n=1}^{\infty} \ln \left(\frac{n+1}{n} \right)$$

$$18. \sum_{n=1}^{\infty} \frac{2^n}{3^n}$$

$$19. \sum_{n=1}^{\infty} \frac{3^n}{2^n}$$

20.
$$\sum_{n=7}^{\infty} e^{-n}$$

$$21. \sum_{n=7}^{\infty} \frac{1}{n \ln(n)}$$

$$22. \sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^n$$

23.
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{3n^2 + 1}$$

$$24. \sum_{n=1}^{\infty} \frac{1}{n}$$

$$25. \sum_{n=1}^{\infty} \frac{1}{n^2}$$

26.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

$$27. \sum_{n=1}^{\infty} \frac{n^2 + 1}{n^3 + 1}$$

$$28. \sum_{n=1}^{\infty} \frac{n^2 + 1}{n^4 + 1}$$

29.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+5}}{n^2+1}$$

$$30. \sum_{n=1}^{\infty} \frac{2^n + n^2}{3^n + n^3}$$

31.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$

$$32. \sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$$

33.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$

$$34. \sum_{n=1}^{\infty} \frac{n}{n!}$$

$$35. \sum_{n=1}^{\infty} \frac{e^n}{n!}$$

$$36. \sum_{n=1}^{\infty} \frac{n^2}{e^n}$$

$$37. \sum_{n=1}^{\infty} \frac{e^n}{n^2}$$

$$38. \sum_{n=1}^{\infty} \frac{n^n}{n!}$$

$$39. \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

40.
$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{3n^2 + 1} \right)^n$$

41.
$$\sum_{n=1}^{\infty} \left(\frac{3n^2 + 1}{2n^2 + 1} \right)^n$$

42.
$$\sum_{n=1}^{\infty} \left(\frac{2n^2}{3n^2 + 1} \right)^n$$

43.
$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^{n^2}$$

4 Power Series and Taylor Series

44. Find the interval of convergence for the following power series.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} x^n$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{2^n} (x-1)^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 2^n} (x-1)^n$$

- 45. Find the Taylor series for the given functions. Show your work and the n^{th} term. Use the definition.
 - (a) $f(x) = e^{3x}$ centered at x = 0.
 - (b) $f(x) = \sin(x)$ centered at x = 0.
 - (c) $f(x) = \sin(x)$ centered at $x = \pi/2$.
 - (d) $f(x) = \ln(x)$ centered at x = 1.
- 46. Find the Taylor series for the given functions. Show your work and the n^{th} term. Use the a known series. You are expected to know the Taylor series for e^x , $\sin(x)$, $\cos(x)$, and $\frac{1}{1-x}$.

- (a) $f(x) = e^{3x}$ centered at x = 0.
- (b) $f(x) = \sin(x^2) x^2$ centered at x = 0.
- (c) $f(x) = \frac{\sin(x^2) x^2}{x^6}$ centered at x = 0.
- (d) $f(x) = xe^{x^2}$ centered at x = 0.