Math 2320 - Final Exam Review

The final exam will include topics from Test 1 and Test 2. For example there will be an integral of each type we have learned. I would study the reviews from Test 1, Test 2 and this review.

1 Definition of the integral

1. Compute the definite integral using the definition.

$$\int_0^3 (2x^2 + 3) \, dx$$

2 Techniques of Integration

2. u-sub

(a)
$$\int x^3 (x^4 + 1)^{3/4} dx$$

(b)
$$\int x \sec(x^2 + 1) \tan(x^2 + 1) dx$$

(c)
$$\int \frac{x^3+1}{x^4+x-7} dx$$

3. By Parts

(a)
$$\int xe^{2x} dx$$

(b)
$$\int x^2 \cos(3x) \, dx$$

(c)
$$\int \ln(x) dx$$

(d)
$$\int \arctan(x) dx$$
 Hint $u = \arctan(x)$, and $dv = 1dx$.

4. Trigonometric Integrals

(a)
$$\int \sin^3(x+1) \, dx$$

(b)
$$\int \sin^2(3x) \, dx$$

(c)
$$\int \sin^{3/4}(2x)\cos(2x)\,dx$$

5. Trigonometric Substitution

(a)
$$\int \frac{1}{\sqrt{x^2 - 1}} \, dx$$

(b)
$$\int \sqrt{4 - 9x^2} \, dx$$

(c)
$$\int \frac{1}{(1+x^2)^{3/2}} \, dx$$

(d)
$$\int \frac{1}{x^2(x^2-1)^{3/2}} dx$$

6. Partial Fractions

(a)
$$\int \frac{1}{x^2(x-1)} \, dx$$

(b)
$$\int \frac{x^3+1}{x(x^2+1)} dx$$

(c)
$$\int \frac{x^2 + x + 1}{x^3 - 3x^2 - 10x} \, dx$$

Taylor Series & Power Series 3

7. Find the Interval of convergence and the radius of convergence for the following power series. Make certain to test the endpoints of the interval.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n3^n} x^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 3^n} x^n$$
(c)
$$\sum_{n=1}^{\infty} \frac{1}{n!} x^n$$
(d)
$$\sum_{n=1}^{\infty} \frac{2^n}{n!} x^n$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n!} x^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{2^n}{n!} x^n$$

(e)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} x^n$$

8. Find the Taylor series from the formula. Find the first four non-zero terms and the n^{th} term at the indicated point.

(a)
$$f(x) = e^{2x}$$
 at $x_0 = 0$

(b)
$$f(x) = e^{2x}$$
 at $x_0 = 1$

- (c) $f(x) = x^4$ at $x_0 = 1$
- (d) $f(x) = \cos(2x)$ at $x_0 = \pi$
- 9. Find the Taylor series from a known series. Find the first four non-zero terms and the n^{th} term at the indicated point.
 - (a) $f(x) = e^{2x}$ at $x_0 = 0$
 - (b) $f(x) = e^{x^2} 1$ at $x_0 = 0$
 - (c) $f(x) = \ln(1+x^3)$ at $x_0 = 0$
 - (d) $f(x) = \frac{\cos(x) 1 \frac{1}{2}x^2}{x^4}$ at $x_0 = 0$
- 10. Use a Taylor series representation to evaluate the following limits
 - (a) $\lim_{x \to 0} \frac{e^x 1 x}{x^2}$
 - (b) $\lim_{x \to 0} \frac{\sin(x^2) x^2}{x^4}$

4 Parametric Equations

- 11. Find the parametric equation for the following equations given in rectangular coordinates.
 - (a) $y = x^2$
 - (b) y = 3x 1
 - (c) $y^2 + y = 2x + 2$
- 12. Find equation in rectangular coordinates for the following equations given in the parametrically.
 - (a) x = 3t and y = 2t 1
 - (b) $x = 3t \text{ and } y = 2t^2 1$
 - (c) $x = 4\cos(2t)$ and $y = 4\sin(2t)$
 - (d) $x = \cos(t)$ and $y = 3\sin(t)$
- 13. Graph the following parametric equations
 - (a) x = 3t and y = 2t 1
 - (b) $x = 3t \text{ and } y = 2t^2 1$
 - (c) $x = \cos(t)$ and $y = 3\sin(t)$
 - (d) $x = t\cos(t)$ and $y = t\sin(t)$

5 Polar Coordinates

- 14. Graph the following given in polar equations.
 - (a) r = 3
 - (b) $r = 4\sin(\theta)$
 - (c) $r = \sin(2\theta)$
 - (d) $r = 1 + 2\sin(\theta)$
- 15. Convert the following given in polar equations into rectangular.
 - (a) r = 3
 - (b) $r = 4\sin(\theta)$
 - (c) $r = \sin(2\theta)$ Hint use a trigonometric identity $\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$.
 - (d) $r = 1 + 2\sin(\theta)$