Name:

MA 2320: Quiz 0 Calculus I Review

- 1. Fill in the table for derivative rules and antiderivative rules.
- 2. Compute the following derivatives:
 - (a) $\frac{d}{dx}[4x^2 5x^{-3}]$
 - (b) Find f'(x) for $f(x) = \sin(x)\sqrt{x^3 x}$
 - (c) Find f''(x) for $f(x) = e^{x^2}$
- 3. Find the local maximums and minimums for $f(x) = x^3 3x + 2$. That is, find the points where f
- 4. Compute the following antiderivatives:
 - (a) $\int 2x^2 + 1 \, dx$
 - (b) $\int 3\sqrt[3]{x} \sin(x) \, dx$
 - (c) $\int \frac{3x x^2 + 1}{2x} dx$
 - (d) $\int e^x dx$
 - (e) $\int e^{3x} dx$ Hint: use u-substitution here
 - (f) $\int 3x \sqrt[3]{x^2-1} dx$ Hint: use u-substitution here
 - (g) $\int \frac{e^x}{1+e^{2x}} dx$ Hint: use u-substitution here. I used $u=e^x$ and I needed antiderivative rule for arctangent.

Derivative Rule	Antiderivative Rule
$\frac{d}{dx}\left[x^n\right] = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C \text{ when } n \neq -1$
$\frac{d}{dx}\left[\ln(x)\right] =$	
$\frac{d}{dx}\left[e^{x}\right] =$	
$\frac{d}{dx}\left[\sin(x)\right] =$	
$\frac{d}{dx}\left[\cos(x)\right] =$	
$\frac{d}{dx} [\tan(x)] =$	
$\frac{d}{dx}[\sec(x)] =$	
$\frac{d}{dx}\left[\cot(x)\right] =$	
$\frac{d}{dx}\left[\csc(x)\right] =$	
$\frac{d}{dx}\left[\sin^{-1}(x)\right] =$	
$\frac{d}{dx}\left[\sec^{-1}(x)\right] =$	
$\frac{d}{dx} [x^n] = nx^{n-1}$ $\frac{d}{dx} [\ln(x)] =$ $\frac{d}{dx} [\sin(x)] =$ $\frac{d}{dx} [\cos(x)] =$ $\frac{d}{dx} [\tan(x)] =$ $\frac{d}{dx} [\sec(x)] =$ $\frac{d}{dx} [\cot(x)] =$	