Math 6250: Final Exam Review

Cardinality 1

- 1. What is the definition A and B have the same cardinality.
- 2. What is the definition A is countable.
- 3. List five sets which are countably infinite. List three sets that are uncountable.
- 4. Show the following sets have the same cardinality
 - (a) \mathbb{N} and \mathbb{Z}
 - (b) \mathbb{N} and \mathbb{Q}
 - (c) (1,5) and (3,11)

$\mathbf{2}$ Some Complex Questions

- 5. Find all $z \in \mathbb{C}$ so that
 - $z^3 = 1$
 - $z^3 = i$
 - $z^2 = i$
 - $z^4 = 1$
 - $z^2 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ $z^4 = 16$
- 6. Let $z = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$. Graph z, z^2, z^3 . Describe what happens graphically when we square z. Look at the argument.
- 7. Let $z = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ and w = i. Graph z, w and zw. Describe what happens graphically when we multiply z and w. Look at the argument.
- 8. Let $z \in \mathbb{C}$. Prove $z\overline{z}$ is a positive real number.
- 9. Use Euler's equation to prove a familiar trigonometric identity for

 $\cos(3\alpha)$.

10. Use Euler's equation to prove a familiar trigonometric identity for

$$\sin(\alpha + \beta).$$

3 Limits of Sequences

11. Compute the following limits and use the $\varepsilon - N$ definition to prove it.

(a)
$$\lim_{n \to \infty} \frac{1}{3n^2 + 5n + 1}$$

(b)
$$\lim_{n \to \infty} \frac{n}{3n + 1}$$

(c)
$$\lim_{n \to \infty} \frac{3n + \sin(n)}{3 - 4n^2}$$

- 12. Use the εN definition to prove If (a_n) is a convergent sequence then (a_n) is bounded.
- 13. Use the εN definition to prove
 - (a) If $\lim a_n = a$ and $k \in \mathbb{R}$ then $\lim ka_n = ka$
 - (b) If $\lim a_n = a$ and $\lim b_n = b$ then $\lim a_n + b_n = a + b$
 - (c) If $\lim a_n = a$ and $\lim b_n = b$ then $\lim a_n b_n = ab$

4 Limits of Functions

- 14. Compute the following limits and use the $\varepsilon \delta$ definition to prove it.
 - (a) $\lim_{x \to 3} x^2 + 2x$
 - (b) $\lim_{x \to c} x^2 + 2x$
 - (c) $\lim_{x\to -1} x^3 + 2x^2 + 1$ Hint divide $x^3 + 2x^2 + 1$ by x + 1.
 - (d) $\lim_{x\to 9}\sqrt{x}=3$
- 15. Use the $\varepsilon \delta$ definition to prove
 - (a) If $\lim_{x\to c} f(x) = F$ and $k \in \mathbb{R}$ then $_{x\to c} k f(x) = kF$
 - (b) If $\lim_{x\to c} f(x) = F$ and $\lim_{x\to c} g(x) = G$ then $\lim_{x\to c} f(x) + g(x) = F + G$

16. Use the fact that

$$\lim_{a \to 0} \frac{\sin(a)}{a} = 1$$

to solve the following (do not use $\varepsilon - \delta$):

(a) $\lim_{x \to 0} \frac{1 - \cos(x)}{x}$ (b) $\lim_{x \to 0} \frac{1 - \cos(x)}{x^2}$ (c) $\lim_{x \to 0} \frac{\sin^2(x)}{x^2}$ (d) $\lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$. Hint us Problem ??

5 Continuity

- 17. Show the following functions are continuus (or not).
 - (a) $f(x) = x^{3}$ at x = c(b) $f(x) = \frac{1}{x}$ at x = c(c) $f(x) = \frac{x^{2} + x}{|x|}$ at x = 0(d) $f(x) = \frac{x^{2} + x}{|x|}$ at x = 0(e) $f(x) = \frac{x^{3} + x^{2}}{|x|}$ at x = 0(f) $f(x) = \frac{x^{4} + x^{2}}{|x|}$ at x = 0(g) $f(x) = \begin{cases} x \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$ (h) $f(x) = \begin{cases} x \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$ (i) $f(x) = \begin{cases} \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$ (j) $f(x) = \begin{cases} x^{2} \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$ (k) $f(x) = \begin{cases} x^{3} \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$

Derivatives 6

- 18. Prove if f is differentiable at x = c then f is continuous at x = c.
- 19. From the definition compute the derivatives for the following functions.

(a)
$$f(x) = x^3$$
 at $x = c$
(b) $f(x) = \frac{1}{x}$ at $x = c$
(c) $f(x) = \frac{x^2 + x}{|x|}$ at $x = 0$
(d) $f(x) = \frac{x^2 + x}{|x|}$ at $x = 0$
(e) $f(x) = \frac{x^3 + x^2}{|x|}$ at $x = 0$
(f) $f(x) = \frac{x^4 + x^2}{|x|}$ at $x = 0$
(g) $f(x) = \begin{cases} x \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$
(h) $f(x) = \begin{cases} x \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$
(i) $f(x) = \begin{cases} \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$
(j) $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$
(k) $f(x) = \begin{cases} x^3 \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$

20. Recall that

$$\lim_{\alpha \to 0} \frac{\sin(\alpha)}{\alpha} = 1.$$

Use this fact to prove the following

- (a) $\lim_{\alpha \to 0} \frac{1 \cos(\alpha)}{\alpha} = 0.$ (a) $\lim_{\alpha \to 0} \frac{\sin^2(\alpha)}{\alpha^2} = 1.$ (b) $\lim_{\alpha \to 0} \frac{1 - \cos^2(\alpha)}{\alpha^2} = 1.$ (c) $\lim_{\alpha \to 0} \frac{1 - \cos^2(\alpha)}{\alpha^2} = 0.$ (d) $\lim_{\alpha \to 0} \frac{[1 - \cos(\alpha)]^2}{\alpha^2} = 0.$ (e) $\lim_{\alpha \to 0} \frac{\tan(\alpha)}{\alpha} = 1.$

21. Note for $f(x) = \sin(x)$ we have shown

$$\lim_{\alpha \to 0} \frac{1 - \cos(\alpha)}{\alpha} = 0.$$

And recall the trigonometric identity from Problem 9 Compute the derivative of f(x) using these two facts.

7 Trigonometry and Dimensions

- 22. Compute the Taylor series for the following functions at c = 0.
 - (a) $f(x) = (x 3)^4$
 - (b) $f(x) = \sin(2x)$
 - (c) $f(x) = e^{5x}$