Math 3160 - Final Exam

Name:_____

No calculators or any other electronic devices permitted. For credit you must justify your answer.

1.	Solve	${\rm the}$	following	system	of linear	equations.

($2x_1$	$+2x_{2}$	$+3x_{3}$		$-2x_{5}$	= 12	
{		$2x_2$	$-x_3$	$+x_4$		= 0	
l	$-x_1$		$-x_3$			= -6	

2. The linear transformation T is given by the formula $T(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}) = \begin{bmatrix} x+y \end{bmatrix}$

$$\left[\begin{array}{c} x+y\\ y+z\\ x-z \end{array}\right].$$

- (a) Find the matrix, A, to represent the linear transformation T.
- (b) Compute the basis for the Range of T, which is the Column Space of A.
- (c) Find a basis for the null space of A, NULL(A).
- (d) Compute the dimension of COL(A) and NULL(A). The dimension of the range of T is called the rank of T and the dimension of the null space is called the nullity.
- (e) What is the dimension of the domain of T and the codomain of T? Again, compare Rank, Nullity and the dimension of the Domain. Do you see a relation?

3. Let $\mathbf{v}_1 = (0, 0, 2, -1)$, $\mathbf{v}_2 = (1, 0, 0, -1)$, $\mathbf{v}_3 = (1, -1, -5, -1)$ and $\mathbf{v}_4 = (1, 1, 1, 1)$. Show the list of vectors is NOT linearally independent by finding a non-trivial linear combination of the vectors equal to zero.

4. Let $\mathbf{v}_1 = (0, 0, 2, -1)$, $\mathbf{v}_2 = (1, 0, 0, -1)$, $\mathbf{v}_3 = (1, -1, -5, -1)$ and $\mathbf{v}_4 = (1, 1, 1, 1)$. You have shown this collection of vector is not independent. Thus it is not a basis. Find a basis for the span of $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$.

5. Find all eigenvalues and corresponding eigenvectors .

4 —	5	5]
$A \equiv$	0	5

6. Diagonalize.

$$A = \left[\begin{array}{cc} 2 & 5 \\ 3 & 0 \end{array} \right]$$

7.	For the E below find D (Hill	ciphe	er problem) and decipher the cipher-
	text message "XGCC". $E =$	$\left[\begin{array}{c}1\\3\end{array}\right]$	$\begin{bmatrix} 2\\5 \end{bmatrix}$

8. Let $\mathbf{v_1} = (1, 2, 3), \, \mathbf{v_2} = (-1, 0, 0), \, \mathbf{v_3} = (-2, 0, 1).$ Orthogonalize.

9. Write down the definition of a linear transformation and prove the range of a linear transformation is a subspace. Hint use the two step subspace test.

Definition. Let V and W be vector spaces. A linear transformation $T: V \to W$ is **linear** if and only if

Theorem. Let V and W be vector spaces and let $T: V \to W$ be a linear transformation. then the range of T is a subspace. *proof.*

a	b	с	d	е	f	g	h	i	j	k	1	m
00	01	02	03	04	05	06	07	08	09	10	11	12
n	0	р	q	r	s	t	u	v	W	х	У	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

 $1 \cdot 1 \equiv 1 \equiv 1 \mod 26$ $3 \cdot 9 \equiv 27 \equiv 1 \mod 26$ $5 \cdot 21 \equiv 105 \equiv 1 \mod 26$ $7 \cdot 15 \equiv 105 \equiv 1 \mod 26$ $9 \cdot 3 \equiv 27 \equiv 1 \mod 26$ $11 \cdot 19 \equiv 209 \equiv 1 \mod 26$ $15 \cdot 7 \equiv 105 \equiv 1 \mod 26$ $17 \cdot 23 \equiv 391 \equiv 1 \mod 26$ $19 \cdot 11 \equiv 209 \equiv 1 \mod 26$ $21 \cdot 5 \equiv 105 \equiv 1 \mod 26$ $23 \cdot 17 \equiv 391 \equiv 1 \mod 26$ $25 \cdot 25 \equiv 625 \equiv 1 \mod 26$