Math 3160 - Test 2.2

- 1. Find standard equation for the plane (in \mathbb{R}^3) so that
 - (a) the plane contains the point P(2,2,-1), Q(1,0,3) and R(0,-1,0).
 - (b) the plane contains the point P(2,2,-1) and is parallel to the two vectors (1,-2,0) and (1,2,-4).

2. Let $W=\{(x,y,z,w)\in\mathbb{R}^4: \text{ where } x+z-w=0\}.$ Use the two step subspace test to show $(W,+,\cdot)$ is a subspace.

- 3. Let $S = \{(0,0,0,1), (1,1,1,1), (1,1,0,1)\}.$
 - (a) Is S linearly independent?
 - (b) Is $(4,7,2,-1) \in \text{Span}(S)$? If yes what is a linear combination of the vectors in S that equals (4,7,2,-1)?
 - (c) Does S span \mathbb{R}^4 ?

- 4. Let $B = \{(1,0),(0,1)\}, B_1 = \{(1,-1),(-1,2)\}$ and $B_2 = \{(1,1),(4,1)\}.$
 - (a) Find the change of basis matrices for $P_{B \to B_1}$ and $P_{B_1 \to B_2}$.
 - (b) Find the coordinates of the point (1,3) (given in the standard basis) relative to the bases B_1 and B_2 .

- 5. Write the matrix for the following transformations described below.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ where the plane is rotated by 30° counter-clockwise.
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ where the x-axis is stretched by 3 and the y-axis is contracted be a factor of 1/2.
 - (c) $T:\mathbb{R}^2\to\mathbb{R}^2$ where the x-axis is stretched by 3 and the y-axis is contracted be a factor of 1/2 and then the plane is rotated by 30° counter-clockwise .

6. The linear transformation
$$T: \mathbb{R}^4 \to \mathbb{R}^4$$
 is given by the formula
$$T(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}) = \begin{bmatrix} x+w \\ 2x+y+3w \\ 3x+2y+z+w \\ x+2w \end{bmatrix}.$$

- (a) Find the matrix, A, to represent the linear transformation T.
- (b) Compute the basis for the Range of T, which is the Column Space
- (c) Find a basis for the null space of A, NULL(A).
- (d) Compute the dimension of COL(A) and NULL(A). The dimension of the range of T is called the rank of T and the dimension of the null space is called the nullity.
- (e) What is the dimension of the domain of T and the codomain of T? Again, compare Rank, Nullity and the dimension of the Domain. Do you see a relation?

7. For the following matrices find the characteristic equation, the eigenvalues and their cooresponding eigen vectors.

$$A = \left[\begin{array}{rrr} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 5 & 0 & 4 \end{array} \right]$$

- 8. Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis for a vector space V with the following properties:
 - \bullet \mathbf{v}_1 is perpandicular to \mathbf{v}_2 and $\mathbf{v}_3,$ and \mathbf{v}_2 is perpandicular to \mathbf{v}_3
 - \bullet the norm of each vector is 1.
 - (a) What is $\mathbf{v}_2 \cdot \mathbf{v}_3$?
 - (b) What is the norm of $\mathbf{v}_1 + 3\mathbf{v}_2 2\mathbf{v}_3$?
 - (c) What is the angle between $\mathbf{v}_1 + 3\mathbf{v}_2 2\mathbf{v}_3$ and \mathbf{v}_2 ?
 - (d) What is the norm of $a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3$ where $a, b, c \in \mathbb{R}$?