Math 3160 - Final Exam

Name:_

No calculators or electronic devisces of any kind and show all work.

1. Find the solution to the given linear system.

$$\begin{cases} x_1 +2x_2 +3x_3 -2x_4 = 4 \\ x_1 +x_4 = 0 \\ -x_1 -x_3 +3x_4 = 6 \end{cases}$$

- 2. Finish the following definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **linear** if and only if
- 3. Let $\mathbf{v}_1 = (1,0,2,-1)$, $\mathbf{v}_2 = (1,1,0,1)$ and $\mathbf{v}_3 = (3,2,2,1)$. Show the list of vectors is NOT linearally independent by finding a non-trivial linear combination of the vectors equal to zero.

- 4. Let P(1,0,4), Q(0,3,0) and R(0,3,4) be points in \mathbb{R}^3 .
 - (a) Compute the area of the triangle formed by the points $P,\,Q$ and R.
 - (b) What is the standard equation of the plane containing the triangle from Problem 4a?
 - (c) What is the parametric (or vector) equation of the plane containing the triangle from Problem 4a?

5. Let $V = \{(x, y, z) \in \mathbb{R}^3 | x + 3y - z = 0\}$. Prove V is a subspace of \mathbb{R}^3 .

6. The linear transformation is given by the formula

$$T(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}) = \begin{bmatrix} x_1 - x_3 \\ x_2 \\ -x_1 + 3x_3 \\ 2x_1 + 2x_2 - 2x_3 \\ 2x_2 \end{bmatrix}.$$

- (a) Find the matrix, A, to represent the linear transformation T.
- (b) Compute the basis for the Range of T.
- (c) Find a basis for the null space of A, NULL(A).
- (d) Find the rank and nullity.
- (e) What is the dimension of the domain of T and the codomain of T? Compare Rank, Nullity and the dimension of the Domain.

7. Let a sequence be defined by the following recursive formula

$$a_1 = 1, a_2 = 2$$
 and $a_{n+2} = a_{n+1} + 6a_n$

- (a) Compute the first five terms of the sequence.
- (b) Find a matrix A for the sequence as we did in class.
- (c) Diagonalize A. That is find D and P so that $A = PDP^{-1}$.
- (d) Compute $A^n \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ using Problem 7c.

- 8. Define the following matrix: $E = \begin{bmatrix} 4 & 3 \\ 7 & 3 \end{bmatrix}$
 - (a) For the plaintext message "DOGS", find the two letter block representation using the alphabet: $A=00, B=01, C=02, D=03, \ldots$
 - (b) Use the matrix E to encipher the plaintmessage.

- 9. Define the following matrix: $E = \begin{bmatrix} 4 & 3 \\ 7 & 3 \end{bmatrix}$
 - (a) Find the deciphering matrix D.
 - (b) Decipher the ciphertext: EGNLHT.

- 10. Let $S = \{(0,1,1), (-2,2,0), (0,0,1)\}.$
 - (a) Show S is a basis.
 - (b) Orthogonalize it.

11. Prove the following:

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$ be a linearly dependent subset of the vector space V. Say

$$a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + a_3\mathbf{u}_3 + \dots + a_n\mathbf{u}_n = 0$$

where a_1 is not zero.

Show that one of the elements of S is a lenear combination of the other elements of S.

- 12. Asssume $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \in \mathbb{R}^n$ satisfy the following properties
 - $\mathbf{u}_1 \cdot \mathbf{u}_1 = 1$, $\mathbf{u}_2 \cdot \mathbf{u}_2 = 1$ and $\mathbf{u}_3 \cdot \mathbf{u}_3 = 1$
 - $\mathbf{u}_1 \cdot \mathbf{u}_2 = 0$, $\mathbf{u}_1 \cdot \mathbf{u}_3 = 0$ and $\mathbf{u}_3 \cdot \mathbf{u}_2 = 0$

Show the change of basis matrix $P_{\text{STANDARD}\to B}$ is given by the matrix with rows $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$, where $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.