Name:

- 1. Write down two equivalent definitions for a list of vectors to be **inde-pendent**.
- 2. Show each of the following lists are independent or dependent
 - (a) (1,2,3), (1,0,-1) in \mathbb{R}^3
 - (b) (1,2,3), (4,5,6), (7,8,9) in \mathbb{R}^3
 - (c) x, 1+x, 1-x in \mathcal{P}_2
- 3. Write down the definition for a **basis** of a vector space. Write down the definition for **span**.
- 4. Are v = (-1, 6, 5, -2) or v = (1, 1, 0, 1) in the span of the following set of vectors?

$$\{(1, 2, 0, 1), (1, 0, -1, 2), (0, 1, 1, 1), (1, 7, 3, 0)\}$$

- 5. Show the following are or are not a basis for the given vector space. Explain why or why not it is a basis.
 - (a) (1,2,3), (4,5,6), (2,3,1) in \mathbb{R}^3
 - (b) (1,2,3), (4,5,6), (7,8,9) in \mathbb{R}^3
 - (c) $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ in \mathbb{R}^3
 - (d) (1,0,1), (0,1,2) in $W = \{(a,b,a+2b) | a, b \in \mathbb{R}\}$
- 6. For the following set of vectors find a basis for their span and find the dimension of their span.
 - (a) (1, 2, 3), (4, 5, 6), (2, 3, 1)
 - (b) (1,2,3), (4,5,6), (7,8,9)
 - (c) (1,0,1), (0,1,2)