Math 6250: Test 2 Review

1 Limits of Functions

- 1. Let I be some interval in \mathbb{R} , let $f: I \to \mathbb{R}$ and $gI \to \mathbb{R}$ and let $c \in I$. Assume $\lim_{x\to c} f(x) = F$ and $\lim_{x\to c} g(x) = G$ and that $k \in \mathbb{R}$. Prove the following:
 - (a) $\lim_{x\to c} kf(x) = kF$
 - (b) $\lim_{x \to c} f(x) + g(x) = F + G$
 - (c) $\lim_{x\to c} f(x)g(x) = FG$
- 2. Prove the following.
 - (a) $\lim_{x \to -2} 3x 1 = -7$
 - (b) $\lim_{x \to -2} x^2 = 4$
 - (c) $\lim_{x \to 4} x^2 + 2x$
 - (d) $\lim_{x \to 4} \frac{1}{x} = \frac{1}{4}$
 - (e) $\lim_{x \to 9} \sqrt{x} = 3$
- 3. Show the following inequalities (for $x \in (0, \pi/2]$) using graphical techniques:
 - $\sin(x) \le x$
 - $x \leq \tan(x)$
 - $\cos(\theta) \le \frac{\sin(\theta)}{\theta} \le 1$
- 4. Use the squeeze Theorem to show

(a)
$$\lim_{x \to 0} x \sin(1/x^2) = 0$$

(b) $\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1$ Use Problem 3

5. Use the fact that

$$\lim_{a \to 0} \frac{\sin(a)}{a} = 1$$

to solve the following (do not use $\varepsilon - \delta$):

(a) $\lim_{x\to 0} \frac{1-\cos(x)}{x}$

- $\begin{array}{ll} \text{(b)} & \lim_{x \to 0} \frac{1 \cos(x)}{x^2} \\ \text{(c)} & \lim_{x \to 0} \frac{\sin^2(x)}{x^2} \\ \text{(d)} & \lim_{h \to 0} \frac{\sin(x+h) \sin(x)}{h}. \end{array} \text{ Hint us Problem 19e} \end{array}$
- 2 Continuity
- 6. Prove the following (use $\varepsilon \delta$ definition).
 - (a) $f(x) = x^2$ is continuous at x = -2.
 - (b) $f(x) = x^2$ is continuous.
 - (c) $f(x) = \sqrt{x}$ is continuous at x = 0.
 - (d) $f(x) = \sqrt{x}$ is continuous at x = 4.
 - (e) $f(x) = \sqrt{x}$ is continuous.
 - (f) $f(x) = \frac{1}{x}$ is continuous at x = 3.
 - (g) $f(x) = \frac{1}{x}$ is continuous.
- 7. For the function below (you do not need the $\varepsilon \delta$ definition here). Is it continuous? Is it differentiable? If yes prove. If no disprove.

$$f(x) = \begin{cases} \frac{x^4 - 2x^2 + 1}{|x| - 1} & : x \neq 1 \text{ and } x \neq -1 \\ 0 & : x = 1, -1 \end{cases}$$

8. For each the functions below. Is it continuous (you do not need the $\varepsilon - \delta$ definition here)? Is it differentiable? If yes prove. If no disprove. Also graph function.

(a)
$$f(x) = \begin{cases} \sin(\frac{1}{x}) & : x \neq 0\\ 0 & : x = 0 \end{cases}$$

(b) $f(x) = \begin{cases} x \sin(\frac{1}{x}) & : x \neq 0\\ 0 & : x = 0 \end{cases}$
(c) $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & : x \neq 0\\ 0 & : x = 0 \end{cases}$

9. Show the following are continuous (or not). Do not use $\varepsilon - \delta$.

(a)
$$f(x) = \begin{cases} -x & x \le 0 \\ x & x > 0 \end{cases}$$
 at $x = 0$.

(b)
$$f(x) = \begin{cases} \sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 at $x = 0$.
(c) $f(x) = \begin{cases} x \sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$ at $x = 0$.
(d) $f(x) = \begin{cases} x^2 \sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$ at $x = 0$.

3 **Derivatives**

- 10. Prove the following (you do not need $\varepsilon \delta$)
 - (a) [kf]'(x) = kf'(x)
 - (b) [f+g]'(x) = f'(x) + g'(x)
 - (c) [fg]'(x) = f'(x)g(x) + f(x)g'(x)
 - (d) $[1/f]'(x) = \frac{-f'(x)}{(f(x))^2}$
 - (e) $[f/g]'(x) = \frac{f'(x)g(x) g'(x)f(x)}{(g(x))^2}$. Use Problem 10c and Problem 10d to show this.

11. Prove

if f is differentiable at x = c then f is continuous at x = c.

12. Compute the following derivatives at the indicated point(s).

(a)
$$f(x) = \begin{cases} -x & x \le 0 \\ x & x > 0 \end{cases}$$
 at $x = 0$.
(b) $f(x) = \begin{cases} \sin(1/x) & x \ne 0 \\ 0 & x = 0 \end{cases}$ at $x = 0$.
(c) $f(x) = \begin{cases} x \sin(1/x) & x \ne 0 \\ 0 & x = 0 \end{cases}$ at $x = 0$.
(d) $f(x) = \begin{cases} x^2 \sin(1/x) & x \ne 0 \\ 0 & x = 0 \end{cases}$ at $x = 0$.
(e) $f(x) = \begin{cases} \frac{|x| - 4x}{x} & x \ne 0 \\ -4 & x = 0 \end{cases}$ at $x = 0$.
(f) $f(x) = \begin{cases} \frac{|x^2| - 4x}{x} & x \ne 0 \\ -4 & x = 0 \end{cases}$ at $x = 0$.

- (g) $f(x) = \begin{cases} \frac{|x^3| 4x}{x} & x \neq 0\\ -4 & x = 0 \end{cases}$ at x = 0.
- (h) Show $[\sin(x)]' = \cos(x)$. Use Problem 5d to help.
- (i) Use $[\sin(x)]' = \cos(x)$ to compute the derivatives for $\cos(x)$, $\tan(x)$, $\cot(x)$, $\sec(x)$ and $\csc(x)$.
- 13. State Rolle's Theorem.
- 14. State the Mean Value Theorem (MVT).
- 15. Use Rolle's Theorem to prove the MVT.
- 16. What does the MVT tell us about the following functions over the given interval. Find c as in the MVT.
 - (a) $f(x) = x^2$ over the interval [-1, 3]
 - (b) $f(x) = |x|^3$ over the interval [-1, 3]
 - (c) f(x) = |x| over the interval [-1, 3]

4 Trigonometry and Dimensions

- 17. Compute the Taylor series for the following functions at c = 0.
 - (a) $f(x) = (x 3)^4$ (b) $f(x) = \sin(2x)$ (c) $f(x) = e^{5x}$
- 18. Prove $e^{i\theta} = \cos(\theta) + i\sin(\theta)$
- 19. Prove the following trigonometric identities:
 - (a) $\sin(2x) = 2\sin(x)\cos(x)$ (b) $\cos(2x) = \cos^2(x) - \sin^2(x)$ (c) $\sin(4x) = 4\sin(x)\cos^3(x) - 4\sin^3(x)\cos(x)$ (d) $\cos(4x) = \cos^4(x) - 2\sin^2(x)\cos^2(x) + \sin^4(x)$ (e) $\sin(\alpha + \beta) = \cos(\alpha)\sin(\beta) + \sin(\alpha)\cos(\beta)$ (f) $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$
- 20. Compute the dimension of a fractal as in class.