Please answer the questions showing your work completely and using correct grammar. No use of electronic devices allowed.

Name and date: _____

1. Prove the statement. If f is surjective and g is surjective then $f \circ g$ is surjective.

2. Prove $(0, \infty) \sim (0, 3)$.

3. Prove: Let $\alpha = \sup(A)$. If $\alpha \notin A$ then A is infinite.

4. Solve for all $x \in \mathbb{C}$ for

• $x^3 = 1$

 $\pi/6$ $\pi/3$ $\pi/2$ 0 $\pi/4$ $\sqrt{2}/2$ $\sqrt{3}/2$ 1/21 0 \sin $\sqrt{3}/2$ $\sqrt{2}/2$ 0 1 1/2 \cos $\sqrt{3}$ 0 1/sqrt3undefined 1 \tan

• $x^2 = i$

5. Find the following limit and prove your answer is correct using the $\varepsilon - N$ definition from class:

$$\lim_{n \to \infty} \frac{3n+2}{3n+4}$$

6. Prove: If (a_n) and (b_n) are convergent then $(a_n + b_n)$ is convergent. State the definition of convergence of a sequence.

7. Use the MCT to prove convergence for a recursively defined sequence. Let $a_1 = 8$, and $a_{n+1} = 5 - \frac{4}{L}$ for all $n \in \mathbb{N}$. Make certain to state the MCT. Also compute the limit.