Name: _____

1. Define the sequence a_n as follows

$$a_1 = 3$$
 and for $n > 1a_n = \sqrt{a_{n-1} + 2}$

- (a) Compute the first four terms of the sequence.
- (b) Prove a_n is strictly decreasing. That is, prove $a_n > a_{n+1}$ for all $n \in \mathbb{N}$.

2. Prove. Let $a, b, c \in \mathbb{Z}$ with $a, c \neq 0$. If a|b and c|d then ac|(ad + bc).

3. Find a pair of integers x, y so that ax + by = gcd(a, b) for each pair below.

a = 133 and b = 121

4. Let a, b, c be integers with $a \neq 0$. Prove if a | bc and gcd(a, b) = 1 then a | c.

5. Prove $\sqrt{5}$ is irrational.

6. For the following elements of S_4

$$\sigma = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{array}\right), \tau = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{array}\right), \gamma = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{array}\right)$$

- (a) Compute $\sigma \circ \tau$.
- (b) Compute γ^3 .
- (c) Compute $(\tau \circ \sigma)^{-1}$.

7. Let

$$H = \left\{ \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{array} \right), \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{array} \right), \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 4 \end{array} \right) \right\}.$$

- (a) Write out the Cayley table.
- (b) Show H is closed over \circ .
- (c) What is G3?
- (d) Show H over \circ satisfies G3.

- 8. Define the following algebraic structure (\mathbb{Z}, \boxtimes) by $a \boxtimes b = a + b 3$.
 - (a) What is the identity for (\mathbb{Z}, \boxtimes) ?
 - (b) What is the inverse for the element 3 in (\mathbb{Z}, \boxtimes) ?