Answer the questions completely and in complete English. No electronic devices are permitted.

Name: _____

1. Let $n \in \mathbb{Z}$. Prove If n is odd then $n^2 - 1$ is divisible by 4.

2. Prove $2^n > n^2$ for all $n \in \mathbb{N}$ with n > 5.

3. Let R be a relation on \mathbb{Z} be defined as follows

 $a\mathcal{R}b \iff 3|a+2b.$

Note that \mathcal{R} is symmetric and transitive. Prove.

- 4. For the relations defined below what are the equivalence classes?
 - (a) $a\mathcal{R}b \iff 3|a+2b$ on \mathbb{Z}

(b) $\mathcal{R} = \{(1,1), (2,2), (3,3), (1,2), (2,1))\}$ on $S = \{1,2,3\}.$

5. Prove If f is injective and g is injective then $g \circ f$ is injective.

- 6. Let $f : [0,4] \to [-2,2]$ be defined by f(x) = -x + 2.
 - (a) Prove f is a bijection.
 - (b) Find the inverse of f.

7. What is the definition of cardinality, infinite, and finite.

8. Show $\mathbb{N} \sim T$ where $T = \{2^n | n \in \mathbb{N}\}\$