Name: _

1 Leftovers from Test 1

- 1. Prove that $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
- 2. Prove that $1 + 3 + 5 + \dots + (2n 1) = n^2$ for all $n \in \mathbb{N}$.
- 3. Define the sequence a_n as follows

$$a_1 = 1$$
 and for $n > 1$, $a_n = \sqrt{a_{n-1} + 2}$

- (a) Compute the first four terms of the sequence.
- (b) Prove a_n is increasing. That is, prove $a_n < a_{n+1}$ for all $n \in \mathbb{N}$.
- (c) Prove $a_n < 4$ for all $n \in \mathbb{N}$.
- 4. Complete the following definitions.
 - Let $f: A \to B$ we say f is **injective** if and only if ...
 - Let $f: A \to B$ we say f is **surjective** if and only if ...
- 5. Define the function $f: [2,5] \rightarrow [2,11]$ by f(x) = 3x 4. Prove f is injective and prove f in surjective.
- 6. Define the function $f: (0, \infty) \to (0, 1)$ by $f(x) = \frac{x}{x+1}$. Prove f is injective and prove f in surjective.
- 7. Prove the following for the functions $f: A \to B$ and $g: B \to C$.
 - (a) If f is injective and g is injective then $g \circ f$ is injective.
 - (b) If f is surjective and g is surjective then $g \circ f$ is surjective.
 - (c) If $g \circ f$ is injective then f is injective.
 - (d) If $g \circ f$ is surjective then g is surjective.

2 Cardinality

- 8. Complete the following definitions for the sets A and B.
 - $A \sim B$ if and only if ...
 - A is **finite** if and only if ...
 - A is **denumerable** if and only if ...

- *A* is **countable** if and only if ...
- *A* is **uncountable** if and only if ...
- 9. Prove the following pairs of sets have the same cardinality.
 - (a) A = (3, 5) and B = (3, 20)
 - (b) A = [3, 5) and B = (3, 20]
 - (c) (0,1) and $(0,\infty)$
 - (d) \mathbb{N} and $E = \{2n | n \in \mathbb{N}\}$ (the evens)
 - (e) \mathbb{N} and \mathbb{Z}
 - (f) \mathbb{N} and \mathbb{Q}^+
- 10. Prove \mathbb{R} is uncountable.
- 11. Prove if A is uncountable and B is uncountable then $A \setminus B$ is countable.
- 12. Prove the irrationals are uncountable.

3 Number Theory

- 13. Let $a, b, c \in \mathbb{Z}$. If a|b then a|bc.
- 14. Let $a, b, c \in \mathbb{Z}$. If a|b and b|c where $b \neq 0$ then a|c.
- 15. Let $a, b, c \in \mathbb{Z}$. If a|b and a|c then a|(bx + cy) for every pair of integers x, y.
- 16. Let $a, b \in \mathbb{N}$. If a|b then $a \leq b$.
- 17. Prove. Let $a, b, c \in \mathbb{Z}$ with $a, c \neq 0$. If a|b and c|d then ac|(ad + bc).
- 18. Prove. Let $a, b, c \in \mathbb{Z}$ with $a, c \neq 0$. If ac|bc then a|b.
- 19. Prove $3|(n^3 n)$ for all $n \in \mathbb{Z}$.
- 20. Find a pair of integers x, y so that ax + by = gcd(a, b) for each pair below.
 - (a) a = 17 and b = 125
 - (b) a = 85 and b = 126
 - (c) a = 168 and b = 40
- 21. Let a and b be odd integers. Prove 4|(a-b) or 4|(a+b).
- 22. Let a be an odd integer. Prove $8|a^2 1$.

- 23. Let a and b be integers, not both zero, where $d = \gcd(a, b)$. Prove for all $k \in \mathbb{N}$ that $k \gcd(a, b) = \gcd(ka, kb)$.
- 24. Let $a \in \mathbb{Z}$ and $n \in \mathbb{N}$. Prove gcd(a + n, a)|n
- 25. Let $n \in \mathbb{N}$. If n|35m + 26 and n|7m + 3 for some integer m, what can n be?
- 26. Let a, b, c be integers with $a \neq 0$. Prove if a | bc and gcd(a, b) = 1 then a | c.
- 27. Let $b, c \in \mathbb{Z}$ and p be a prime. Prove If p|bc then p|b or p|c.
- 28. Prove or disprove the following:
 - (a) For all $n \in \mathbb{Z}$, 2n and 4n + 3 are relatively prime.
 - (b) For all $n \in \mathbb{Z}$, 2n + 1 and 3n + 2 are relatively prime.
- 29. Prove $\sqrt{5}$ is irrational.
- 30. There are infinitely many primes.
- 31. Prove If k is composite then $2^k 1$ is composite.
- 32. Prove If $2^k 1$ is prime then k is prime.

4 The Symmetric Group

- 33. Write out the set S_4 .
- 34. How many elements are in the sets S_3 , S_5 and S_n ?
- 35. For the following elements of S_4

$$\sigma = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{array}\right), \tau = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{array}\right), \gamma = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{array}\right)$$

- (a) Compute $\sigma \circ \tau$.
- (b) Compute γ^3 .
- (c) Compute σ^{-1} .
- (d) Compute $(\sigma \circ \tau)^{-1}$.
- (e) Compute $\sigma^{-1} \circ \tau^{-1}$.
- (f) Compare Problem 35d and Problem 35e.

36. Write down the multiplication table for the following subsets of S_3 .

(a)
$$H = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \right\}$$

(b) $H = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}$

5 Group Theory

37. Complete the following definitions.

- * is a **binary operation** on the set S if and only if ...
- (G, *) is a **group** if and only if ...
- (G, *) is an **Abelian group** if and only if ...
- 38. Which properties (G1, G2 or G3) fails for the following binary operations.
 - (a) Let * be defined on \mathbb{R}^+ by $a * b = \sqrt{ab}$.
 - (b) Let * be defined on \mathbb{R}^+ by a * b = a/b.
 - (c) Let * be defined on \mathbb{R}^+ by a * b = a + b + ab.
- 39. Define the following algebraic structure $(\mathbb{Z}, *)$ by a * b = a + b 2.
 - (a) Compute 1^{*2} , 2^{*3} , 0^{*0} and 4^{*2} .
 - (b) What is the identity of this algebraic structure? Call it e.
 - (c) Prove $(\mathbb{Z}, *)$ satisfies G1. That is, Prove if $a, b, c \in \mathbb{Z}$ then a * (b * c) = (a * b) * c.
 - (d) Prove (Z, *) satisfies G2. That is, Prove that the e you identified in Problem 39b satisfies
 a * e = e * a = a for all a ∈ Z.
 - (e) Prove $(\mathbb{Z}, *)$ satisfies G3. That is, Prove if $a \in \mathbb{Z}$ then there is $b \in \mathbb{Z}$ so that a * b = b * a = e.
 - (f) Prove $(\mathbb{Z}, *)$ satisfies G4. That is, Prove if $a, b \in \mathbb{Z}$ then a * b = b * a.
- 40. Define the following algebraic structure $(\mathbb{Q}^+, *)$ by a * b = 4ab.
 - (a) Compute $1 * \frac{1}{2}$, 4 * 1, $\frac{1}{4} * \frac{1}{3}$ and 4 * 2.
 - (b) What is the identity of this algebraic structure? Call it e.
 - (c) Prove $(\mathbb{Q}^+, *)$ satisfies G1. That is, Prove if $a, b, c \in \mathbb{Q}^+$ then a * (b * c) = (a * b) * c.
 - (d) Prove (Q⁺, *) satisfies G2. That is, Prove that the *e* you identified in Problem 40b satisfies
 - a * e = e * a = a for all $a \in \mathbb{Q}^+$.
 - (e) Prove $(\mathbb{Q}^+, *)$ satisfies G3. That is, Prove if $a \in \mathbb{Z}$ then there is $b \in \mathbb{Q}^+$ so that a * b = b * a = e.
 - (f) Prove $(\mathbb{Q}^+, *)$ satisfies G4. That is, Prove if $a, b \in \mathbb{Q}^+$ then a * b = b * a.

41. Definitions of **closed**.

42. For the group (S_3, \circ) Show

$$H = \left\{ \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right), \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array} \right), \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array} \right) \right\}$$

is a group.

43. For the group (S_3, \circ) Show

$$H = \left\{ \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right), \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array} \right), \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array} \right) \right\}$$

is **not** a group.