Name: _

1 Basic Proofs

1. Complete the following:

- (a) Disprove the statement: Let $n \in \mathbb{Z}$. If $n^3 + n^2 + n + 1$ is odd then n is odd.
- (b) Prove the statement: Let $n \in \mathbb{Z}$. If $n^3 + n^2 + n + 1$ is even then n is odd.
- 2. Let x be an odd integer. Show $x^2 1$ is divisible by 4.
- 3. Let $n \in \mathbb{Z}$. Show $(n+2)^2 (n)^2$ is divisible by 4. Here I used four cases, the four possible remainders when dividing n by 4.

case 1. n = 4q, case 2. n = 4q+1, case 3. n = 4q+2, and case 4. n = 4q+3,

- 4. Let $x \in Q \setminus \{0\}$ and $y \in \mathbb{R} \setminus \mathbb{Q}$. Show $xy \in \mathbb{R} \setminus \mathbb{Q}$.
- 5. Let $x, y \in Q$. Show $xy \in \mathbb{Q}$.
- 6. Disprove the following: If $x \in \mathbb{R} \setminus \mathbb{Q}$ and $y \in \mathbb{R} \setminus \mathbb{Q}$ then $xy \in \mathbb{R} \setminus \mathbb{Q}$.

2 Induction

- 7. Which of the following are well ordered. No proof is needed.
 - (a) $A = \mathbb{N}$
 - (b) $B = \mathbb{Z}$
 - (c) The set of all even integers.
 - (d) $D = \{q \in \mathbb{Q} | q > 0\}$
- 8. Prove. Let $B \subset A$. If A is a well ordered set of numbers than B is a well ordered set of numbers.
- 9. Let $n \in \mathbb{N}$. Show $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.
- 10. Let $n \in \mathbb{Z}$ and n > 4. Show $n! > 2^n$.
- 11. Let $n \in \mathbb{N}$. Show $4|5^n 1$.
- 12. Prove $8|5^{2n} 1$ for all $n \in \mathbb{N}$.

- 13. Prove $n! > 2^n$ for all $n \in \mathbb{N}$ with n > 3.
- 14. Define the sequence

$$a_1 = 1$$
 and $a_n = \sqrt{a_{n-1} + 3}$

- (a) Prove a_n is increasing. That is, prove $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$.
- (b) Prove a_n is bounded above by 6. That is, prove $a_n \leq 6$ for all $n \in \mathbb{N}$.

3 Relations

15. Let R, a relation on $A = \{1, 2, 3\}$, be defined as follows

$$\mathcal{R} = \{(1,2), (2,3), (3,1), (1,1)\}$$

- (a) Compute $dom(\mathcal{R})$, $range(\mathcal{R})$, and \mathcal{R}^{-1} .
- (b) Is \mathcal{R} reflexive symmetric or transitive? Show this.

16. Let R be a relation on \mathbbm{Z} be defined as follows

 $a\mathcal{R}b \iff 4|a+3b.$

- (a) Write out seven element of this relation.
- (b) Note that \mathcal{R} is reflexive, symmetric and transitive? Prove.
- 17. For the following relation defined on \mathbbm{Z}

$$a\mathcal{R}b \iff 5|a-b|$$

prove that \mathcal{R} is an equivalence relation.

18. Using the equivalence relation above, prove that addition over \mathcal{R} is well defined. That is show

if $a_1 \mathcal{R} b_1$ and $a_2 \mathcal{R} b_2$ then $a_1 + a_2 \mathcal{R} b_1 + b_2$.

- 19. Solve the following problems for x in \mathbb{Z}_n where $x \in \{0, 1, 2, \dots, n-1\}$.
 - (a) [x] + [3] = [11] in \mathbb{Z}_3
 - (b) [3][100] = [x] in \mathbb{Z}_7
 - (c) [3][x] = [1] in \mathbb{Z}_7
 - (d) [3][x] = [100] in \mathbb{Z}_7
 - (e) [2][x] = [4] in \mathbb{Z}_8
 - (f) [4][x] = [2] in \mathbb{Z}_8

- 20. For the relations defined below what are the equivalence classes?
 - (a) $a\mathcal{R}b \iff 3|a+2b$ on \mathbb{Z}
 - (b) $\mathcal{R} = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ on $S = \{1,2,3\}.$
- 21. $P_1 = \{1, 2\}, P_2 = \{3\}$, and $P_3 = \{4\}$ is a partition of the set $S = \{1, 2, 3, 4\}$. What is the corresponding equivalence relation on S?

4 Functions

- 22. Define $f : \{1, 2, 3\} \to \{4, 7, 9\}$ by f(1) = 4, f(2) = 4 and f(3) = 9.
 - (a) Is f injective, surjective or bijective? Compute
 - (b) Compute $f(\{1,2\}), f^{-1}(\{1,4\})$ and $f \circ f^{-1}(\{4,9\})$.
- 23. Define $f : \mathbb{Z} \to \mathbb{Z}$ by f(n) = 2n 1. Is f injective, surjective or bijective? Prove or disprove.
- 24. Solve the following from your book 10.1, 10.2, 10.11
- 25. Prove the following for the functions $f: A \to B$ and $g: B \to C$.
 - (a) If f is injective and g is injective then $g \circ f$ is injective.
 - (b) If f is surjective and g is surjective then $g \circ f$ is surjective.
 - (c) If $g \circ f$ is injective then f is injective.
 - (d) If $g \circ f$ is surjective then g is surjective.
- 26. Let $f : [1,3] \to [8,14]$ be defined by f(x) = 3x + 5.
 - (a) Prove f is a bijection.
 - (b) Find the inverse of f.

27. Let $f: (0,\infty) \to (0,1)$ be defined by $f(x) = \frac{x}{1+x}$.

- (a) Prove f is a bijection.
- (b) Find the inverse of f.
- 28. Define $f: (-\infty, 0) \to [0, \infty)$ by $f(x) = x^2$.
 - (a) Is f injective, surjective or bijective? Prove or disprove.
 - (b) Compute $f((-2,2)), f^{-1}((-2,2)), f^{-1} \circ f(\{4,9\})$ and $f \circ f^{-1}(\{4,9\})$.
- 29. Define $f : \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{1\}$ by $f(x) = \frac{x}{x-2}$. Is f injective, surjective or bijective? Prove or disprove.
- 30. Find all bijective functions from $\{1, 2, 3\}$ to $\{1, 2, 3\}$. How many functions did you come up with?

5 Cardinality

- 31. What is the definition of cardinality, infinite, finite, countable and uncountable.
- 32. Show the following:
 - (a) $A \sim \mathbb{N}$ where $A = \{\frac{1}{n} : n \in \mathbb{N}\}.$
 - (b) $\mathbb{Z} \sim \mathbb{N}$
 - (c) $(1,2] \sim [1,5)$
 - (d) $(0,\infty) \sim (0,1)$