Name: _____

- 1. We have a vase with 4 red balls, two green balls, three blue balls and 6 purple balls. We will select two without replacement.
 - (a) Find probability that we select two red balls.
 - (b) Find probability that we select one red and one green ball.

2. Look at the following table for the outcome of an experimental drug.

	Drug A success	Drug A Failure
Male	6	7
Female	23	33

(a) Compute the probability that a randomly selected person in the survey was male.

(b) Compute Probability of success for Drug A given that the participant was male.

(c) Compute Probability that the participant was male given that the drug was successful (Use Bayes' Rule).

- 3. Let $f(x) = \frac{1}{3}e^{-x/3}$ for $x \ge 0$ be the probability function for some random variable X.
 - (a) Compute $Pr(X \ge 2)$.
 - (b) Compute $Pr(X \ge 5 | X \ge 3)$.
 - (c) Compare your answers to Problem 3a and Problem 3b

4. Roll a four sided die with the following probability table.

x	1	2	3	4
f(x)	0.4	0.3	0.2	?

Compute μ_X , VAR(X), SD(X) and CV(X).

5. Let X be a continuous RV with PF defined below.

$$f(x) = \frac{1}{4}e^{-x/4}$$
 for $x \ge 0$

Compute μ_X , VAR(X).

- 6. Find the MGF for
 - (a) Pr(X = -1) = 1/3, Pr(X = 2) = 2/9, Pr(X = 1) = 1/9 and Pr(X = 2) = 1/3. (b) $f(x) = \frac{1}{2}x$ for 0 < x < 2.

- 7. Compute E(X) and VAR(X). for the following
 - (a) Let $M(t) = \frac{1}{1-t}$ be the MGF for some RV X.

(b) Let $M(t) = e^{3t}$ be the MGF for some RV X.

- 8. Let X be a continuous RV with pdf $f(x) = c \frac{1}{(1+x)^3}$ for $x \in (0, \infty)$.
 - (a) Compute C.
 - (b) Compute E(X) and VAR(X)

- 9. Let X be a continuous RV with pdf $f(x) = 3x^2$ for $x \in (0, 1)$.
 - (a) Let $Y = X^2$. Find the pdf for Y.
 - (b) Let Z = 3X + 2. Find the pdf for Z.