1 L'Hôspital's Rule

1. Compute the following limits.

(a)
$$\lim_{x \to 0} \frac{e^{x} - 1}{x}$$

(b)
$$\lim_{x \to 0} \frac{e^{x^{2}} - 1}{x}$$

(c)
$$\lim_{x \to 0} \frac{e^{x^{2}} - 1}{x^{2}}$$

(d)
$$\lim_{x \to 0} \frac{e^{3x} - 1}{\sin(4x)}$$

(e)
$$\lim_{x \to 0} \frac{e^{x} - 1 - x}{x\sin(4x)}$$

(f)
$$\lim_{n \to \infty} e^{-n}(n^{2} + 1)$$

(g)
$$\lim_{x \to 0^{+}} x \ln(x)$$

(h)
$$\lim_{x \to 0^{+}} \frac{\ln(1 - 3x)}{x}$$

(i)
$$\lim_{x \to 0^{+}} \frac{\ln(1 - 3x^{2})}{4x^{2}}$$

(j)
$$\lim_{x \to 0^{+}} (1 - 3x)^{\frac{1}{x}}$$

(k)
$$\lim_{x \to 0^{+}} (1 + 3x^{2})^{\frac{2}{x^{2}}}$$

(l)
$$\lim_{n \to \infty} (1 + \frac{2}{n})^{n}$$

(m)
$$\lim_{x \to 0^{+}} x^{\sin(x)}$$

- (o) $\lim_{x \to 0^+} [\sin(x)]^x$
- (p) $\lim_{x \to 0^+} (x^2)^x$

2 Integrals

2. Compute the following.

(a)
$$\int 7 \sec^2(x) - 3 \, dx$$

(b) $\int 3x^3 - \sqrt{x} - \frac{3}{x} + \frac{1}{\sqrt{x}} \, dx$

(c)
$$\int x(x^2 - 1) dx$$

(d)
$$\int \frac{11}{\sqrt{1 - x^2}} - \frac{3}{x} dx$$

(e)
$$\int \frac{4}{1 + x^2} - \frac{1 + x^2}{4} dx$$

(f)
$$\int \frac{4x}{1 + x^2} dx$$
 Hint use u-sub for this one
(g)
$$\int \sin(2x - 3) dx$$

(h)
$$\int e^{x+2} dx$$

(i)
$$\int xe^{1+x^2} dx$$

(j)
$$\int x\sqrt{1 + x^2} dx$$

(k)
$$\int x\sin(1 + x^2) dx$$

(l)
$$\int x\csc^2(1 + x^2) dx$$

(m)
$$\int e^x \sqrt{e^x + 1} dx$$

(n)
$$\int (\sin(x) + 1)^4 \cos(x) dx$$

3 Everything from Practice Test 3

4 From Practice Test 1

3. Compute the derivative using the **definition** of the derivative

(a)
$$f(x) = 3x + 5$$
 at $x = -1$
(b) $f(x) = x^2$ at $x = 2$
(c) $f(x) = x^2$
(d) $f(x) = 5x + 1$
(e) $f(x) = \sqrt{x}$

- (f) $f(x) = \frac{1}{x}$
- 4. Compute the derivative using implicit differentiation.

- (a) $x^3 + y^3 = 2x + 5$
- (b) $x^3y^3 = 2x + 5$
- (c) $\sin(x^3) + \sin(y^3) = 2x + 5$
- (d) $\sin(x^3y^3) = 2x + 5$
- (e) $\sin(xy^2) = 2x + 5y 7$
- (f) $y = 2^x$ use logarithmic differentiation here.
- (g) $y = x^x$ use logarithmic differentiation here.
- (h) $y = x^{x^2}$ use logarithmic differentiation here.
- (i) $y = x^{2^x}$ use logarithmic differentiation here.
- (j) $y = \sin(x)^x$ use logarithmic differentiation here.
- (k) $y = \sin(x)^{e^x}$ use logarithmic differentiation here.
- 5. Let $s(t) = -4.9t^2 + 3t + 1$ represent the height of a ball we through up in the air at time t = 0.
 - (a) What is the height of the ball at time t = 0?
 - (b) What is the speed of the ball at time t = 0?
 - (c) When does the ball have a velocity of zero?
 - (d) When does the ball hit the ground?
 - (e) What is the velocity of the ball when it hits the ground?
 - (f) Write out the velocity and acceleration equations (maybe you should do this question first).