Name:

1 Orthogonalization

- 1. Let $\mathbf{v} = (1, 2, 3)$ and $\mathbf{w} = (-1, 0, 1)$ Compute $Proj_{\mathbf{v}}\mathbf{w}$ and $Proj_{\mathbf{w}}\mathbf{v}$.
- 2. wedge problem like in class
- 3. Let $\mathbf{v} = (1, 2, 3)$ and $\mathbf{w} = (0, 1, -1)$ Find the component of \mathbf{v} parallel to \mathbf{w} and the perpandicular component. We called these \mathbf{C}_1 and \mathbf{C}_2 respectively.
- 4. Let $S = \{(1, 0, 1), (-1, 1, 1), (0, -1, 1)\}$. Is S orthonormal? Show this.
- 5. Let $S = \{(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}), (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (\frac{1}{2}, \frac{1}{2}, -\frac{1}{\sqrt{2}})\}$. Is S orthonormal? Show this.
- 6. Note $\mathcal{B} = \{\mathbf{v}_1 = (\frac{4}{5}, \frac{3}{5}), \mathbf{v}_2 = (\frac{3}{5}, -\frac{4}{5})\}$ is an orthonormal basis for \mathbb{R}^2 .
 - (a) Compute $P_{S \to B}$ where S is the standard unit normal basis.
 - (b) Use Problem 6a to express the vector **v** = (−3, 2) relative to the basis B.
 - (c) Compute $\mathbf{v} \cdot \mathbf{v}_1$ and $\mathbf{v} \cdot \mathbf{v}_2$.
 - (d) Use Problem 6c to express the vector $\mathbf{v} = (-3, 2)$ relative to the basis \mathcal{B} .
- 7. Let $S = \{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}.$
 - (a) Show S is a basis.
 - (b) Orthogonalize it.
 - (c) Write (3, -1, 2) in the terms of the basis.
- 8. Let $S = \{(1, 2, 3), (-1, 1, 0), (0, 0, 1)\}.$
 - (a) Show S is a basis.
 - (b) Orthogonalize it.

Gram-Schmidt Orthoganlization

To convert a basis $\{u_1, u_2, \ldots, u_r\}$ into an orthogonal basis $\{v_1, v_2, \ldots, v_r\}$, perform the following computations:

- $\mathbf{v}_1 = \mathbf{u}_1$
- $\mathbf{v}_2 = \mathbf{u}_2 \frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1$
- $\mathbf{v}_3 = \mathbf{u}_3 \frac{\mathbf{u}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 \frac{\mathbf{u}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2$

To convert to an orthonormal basis, normalize each vector.