Math 3160 - Extra Quiz

Name:

For the following show all work clearly.

1. Find the eigenvalues and bases of eigenspaces (the eigenvectors) for

$$A = \left[\begin{array}{cc} 4 & -5 \\ 1 & 0 \end{array} \right] \text{ and } B = \left[\begin{array}{cc} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array} \right].$$

2. Rewrite the following in terms of $\langle u, v \rangle$ and ||u|| and ||v||. Make certian to justify each step.

$$\langle 2v - 4u, v + 3u \rangle$$

- 3. Prove Theroem 6.1.1 parts a and c from your book.
- 4. Answer the questions for the standard inner product defined on \mathcal{P}_2 .
 - (a) $||x^2||$
 - (b) $d(x^2, 1-x-x^2)$
 - (c) the angle θ between x^2 and $1-x-x^2$.
- 5. Answer the questions for the inner product defined on \mathcal{P}_2 .

$$\langle f, g \rangle = \int_{-1}^{1} fg \, dx$$

- (a) $||x^2||$
- (b) $d(x^2, 1 x x^2)$
- (c) the angle θ between x^2 and $1 x x^2$.
- 6. Answer the questions for the evaluation inner product defined on \mathcal{P}_2 using the points $x_0 = 1, x_2 = 2$, and $x_3 = -1$.
 - (a) $||x^2||$
 - (b) $d(x^2, 1 x x^2)$
 - (c) the angle θ between x^2 and $1-x-x^2$.
- 7. Sketch the unit circle for $\langle (x_1, y_1), (x_2, y_2) \rangle = 3x_1x_2 + 3y_1y_2$ on \mathbb{R}^2 .
- 8. Use GS Orthogonalization to find an ON basis for the following.

- (a) $\{(1,3),(-1,2)\}$ on the inner product space defined in problem 7.
- (b) $\{1, 2x^2, x 1\}$ on the inner product space defined in problem 4.
- (c) $\{1, 2x^2, x 1\}$ on the inner product space defined in problem 5.
- (d) $\{1, 2x^2, x 1\}$ on the inner product space defined in problem 6.
- 9. Find W^{\perp} for the following subspaces W with the defined inner products.
 - (a) $W=\{(x,y,z)\in\mathbb{R}^3|3x+2y=z\}$ with the Euclidean inner product (the usual dot product).
 - (b) $W = \{p(x) \in \mathcal{P}_2 | p'(x) = 0\}$ with the integral inner product defined in Problem 5.