MA 2320: Quiz 6

Name:
1.
$$\sum_{k=1}^{\infty} \left(\frac{k^2+1}{2k^2-1}\right)^k$$
2.
$$\sum_{k=1}^{\infty} \left(1+\frac{2}{k}\right)^{k^2}$$
3.
$$\sum_{k=1}^{\infty} \frac{1}{k^3+1}$$
4.
$$\sum_{k=2}^{\infty} \frac{1}{\sqrt{k}-1}$$

5. Find the Interval of Convergence for

(a)
$$f(x) = \sum_{n=1}^{\infty} \frac{1}{2^k \sqrt{k}} x^n$$

(b) $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} x^n$
(c) $f(x) = \sum_{n=1}^{\infty} \frac{n^n}{n!} x^n$

6. $f(x) = \ln(x)$

- (a) Find the Taylor Series for f(x) with c = 1 from the **definition**.
- (b) Find the Interval of convergence for this series.
- (c) Use $T_3(x)$ to approximate $\ln(1.1)$. Find the remainder using Taylor remainder formula to compute the accuracy of your approximation.
- 7. $f(x) = xe^{x^2}$
 - (a) Find the Taylor Series for f(x) with c = 0 using known Taylor series.
 - (b) Find the Interval of convergence for this series.
 - (c) Use $T_3(x)$ to approximate $\ln(1.1)$. Find the remainder using Taylor remainder formula to compute the accuracy of your approximation.
- 8. Find the Taylor Series for $f(x) = \frac{\sin(x^2) x^2}{x^2}$ with c = 0 using known Taylor series.
- 9. Use the series from Problem 8 to compute the following limit.

$$\lim_{x \to 0} \frac{\sin(x^2) - x^2}{x^2}$$

- 10. Find the Taylor Series for $f(x) = \arctan(x)$ with c = 0 using known Taylor series.
- 11. Use the series from Problem 10 to get a series representation for $4 \arctan(1)$. Why is this series interesting?
- 12. Compute the following integrals:

(a)
$$\int xe^{x^2} dx$$

(b)
$$\int x^2 e^x dx$$

(c)
$$\int \frac{2x^2 - 1}{x^3 - x^2} dx$$