Name:

1. Define the following relation on \mathbb{Z}

 $a\mathcal{R}b \iff 5|4a+b$

Prove \mathcal{R} is reflexive and symmetric.

- 2. Let $f : A \to B$ and let $g : B \to C$. Prove if f and g are injective then $g \circ f$ is injective..
- 3. Let $A \subset \mathbb{R}$ that is nonempty and bounded above. Let $\alpha = \sup(A)$. Prove if $\alpha \notin A$ then A is infinite.
- 4. State the completeness axiom.
- 5. Prove limit of sequence $\lim_{n\to\infty} \frac{n+1}{2n+3} = \frac{1}{2}$.
- 6. Prove **one** of the following:
 - (a) $\mathbb{Q} \sim \mathbb{N}$
 - (b) $\mathbb{R} \not\sim \mathbb{N}$
- 7. Prove **one** of the following:
 - (a) If $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$ then $\lim_{n\to\infty} a_n b_n = ab$.
 - (b) The series $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$ is divergent.
- 8. Find the limit and prove your limit is correct (use the $\varepsilon \delta$ definition for limits).

$$\lim_{x \to -3} x^2 - 3x$$

- 9. Prove function $f(x) = \frac{1}{x}$ is continuous at the point x = 7 (use the $\varepsilon \delta$ definition for continuity).
- 10. Let $p \in \mathbb{R}^+$ and let $f : \mathbb{R} \to \mathbb{R}$ satisfy

$$|f(x) - f(y)| \le |x - y|^p$$
 for all $x, y \in R$.

- (a) Prove f is continuous (use the $\varepsilon \delta$ definition for continuity).
- (b) Does $f: [0, \infty) \to \mathbb{R}$ where $f(x) = \sqrt{x}$ satisfy this property with p = 1? Prove or disprove.

- ec 1. Find all complex solutions to $x^4 = \frac{1}{2} i\frac{\sqrt{3}}{2}$
- ec 2. Graph the function $f(x) = \frac{1}{x}$ and the function $g(x) = \sin(x)$. Use these two to graph

$$h(x) = \begin{cases} x \sin(\frac{1}{x}) & : x \neq 0\\ 0 & : x = 0 \end{cases}$$

Prove h(x) continuous at the point x = 0 (use the $\varepsilon - \delta$ definition for continuity).