Math 4160 - Test 1 Review

1 Vector Spaces and Subspaces

- 1. Let $V = \mathbb{R}^3$ equipped with usual vector addition and scalar multiplication. Prove V is a vector space. That is, prove all 10 Axioms.
- 2. Let $V = \mathbb{R}^2$. And define the two operations

- (a) Compute $(0, 4) \oplus (-2, 3)$ and compute $2 \odot (1, 1)$.
- (b) Show $0 \neq (0, 0)$.
- (c) Show $\mathbf{0} = (-1, -1)$.
- (d) Prove Axiom 5. That is, for each \mathbf{v} find $-\mathbf{v}$ so that

$$\mathbf{v} \oplus -\mathbf{v} = \mathbf{0}.$$

- (e) V does satisfy some of the vector space axioms, but not all of the axioms. Find two axioms that fail.
- 3. State the two step subspace test.
- 4. Let $W = \{(a, b, c) \in \mathbb{R}^3 : \text{ where } a + b + c = 1\}.$
 - (a) Use the two step subspace test to show $(W, +, \cdot)$ is a subspace.
 - (b) What geometric shape is W? Hint I gave it in standard form.
 - (c) Give me the parametric for the geometric object defined in the set W.
- 5. Prove the following are subspaces of $V = \mathbb{R}^3$ or are not subspaces.
 - (a) $\{(x, y, z) | x + y z = 0\}$
 - (b) $\{(x, y, z) | xyz = 1\}$
 - (c) $\{(x, y, z) | x + y z = 1\}$
 - (d) $\{(x, y, z) | x + y z = 0 \text{ and } 2x = z\}$
- 6. Let $W = \{(x, y, z) \in \mathbb{R}^3 : \text{ where } x 3y z = 0\}.$

- (a) Use the two step subspace test to show $(W, +, \cdot)$ is a subspace.
- (b) What geometric shape is W? Hint I gave it in standard form.
- (c) Give me the parametric for the geometric object defined in the set W.

2 Linear Independence

- 7. Let $S = \{(1, 2, 1), (0, 1, 2), (0, -1, 0)\}.$
 - (a) Is S linearly independent? (There is an easy test for this problem).
 - (b) Is $(2,2,2) \in \text{Span}(S)$? If yes what is a linear combination of the vectors in S that equals (2,2,2)?
 - (c) Does S span \mathbb{R}^3 ?
- 8. Let $S = \{x, x+2, x^3 x 1, x^3\}$ be a set in P_3 .
 - (a) Is S linearly independent?
 - (b) Is $x^3 + x^2 + x + 1 \in \text{Span}(S)$? If yes what is a linear combination of the polynomials in S that equals $x^3 + x^2 + x + 1$?
 - (c) Is $4x^3 2x \in \text{Span}(S)$? If yes what is a linear combination of the polynomials in S that equals $4x^3 2x$?
 - (d) Does S span P_3 ?
- 9. Are the following lists linearly independent? Justify your answer.
 - (a) Span((1, -2, 1), (1, 1, 1), (-2, 3, -2))
 - (b) $\{x, x x^2, x + x^2\}$
 - (c) $\{(1, -2, 1), (3, -12, 2), (1, 2, 3)\}$

3 Span, Basis

- 10. Let $B = \{(1, 2, 1), (0, 1, 2), (0, -1, 0)\}.$
 - (a) Is B a basis for \mathbb{R}^3
 - (b) Write the vector (1, 0, -1) relative to the basis B.
 - (c) Write the vector (a, b, c) relative to the basis B.

- (d) Find the change of basis matrix from the standard basis to the basis B. (we called it $P_{\text{STANDARD}\to B}$ in class).
- 11. For the following system of linear equations.

- (a) Find the solution set.
- (b) Find a basis for the solution set.
- (c) What is the dimension of that solution set?
- 12. For the following subspace of P_3

$$W = \{a + bx + cx^{2} + dx^{3} : a = -c \text{ and } b = c + d\}$$

- (a) Find a basis for W.
- (b) What is the dimension of that solution set?
- 13. Answer yes or no and justify your answer.
 - (a) Is $(1,2,3) \in \text{Span}((1,-2,1),(1,1,1))$?
 - (b) Is $x^2 1 \in \text{Span}(x, x x^2, x + x^2)$?
 - (c) Is $(1,2,3) \in \text{Span}((1,-2,1),(3,-12,2))$?
 - (d) Is $(1,2,3) \in \text{Span}((4,5,6),(7,8,9))$?
- 14. Find a a basis and dimension for the following.
 - (a) Span((1, -2, 1), (1, 1, 1), (-2, 3, -2))
 - (b) $\{p \in \mathcal{P}(\mathbb{R}) : p'(3) = 0\}$
 - (c) $\{p \in \mathcal{P}_3(\mathbb{R}) : p'(3) = 0\}$
 - (d) $\{(x, y, z, w) \in \mathbb{R}^4 : x + y 2z = 0 \text{ and } 3y z w = 0\}$

4 Change of Basis Matrix

- 15. Let $B_1 = \{(-1,1), (2,3)\}, B_2 = \{(1,-1), (1,1)\}$ and let B be the standard unit basis for \mathbb{R}^2 .
 - (a) Find the change of basis matrices for $P_{B_1 \to B_2}$ and $P_{B_1 \to B_2}$.
 - (b) Find the coordinates of the point (4, 6) (given in the standard basis) relative to the bases B_1 and B_2 .

- (c) Find the change of basis matrices for $P_{B\to B_2}$ and $P_{B_2\to B}$.
- (d) Find the coordinates of the point (2, -4) (given in the standard basis) relative to the bases B and B_2 . Graph this point the two separate coordinate axes B and B_2 .

5 Row Space, Column Space & Null space

- 16. Let W be the plane x 2y + z = 0 in \mathbb{R}^3 .
 - (a) Find the parametric equation for the plane.
 - (b) Find a basis for W.
 - (c) Compute the solution set to the linear system x 2y + z = 0 in \mathbb{R}^3 .
- 17. Let W be the hyperplane $x_1 2x_2 + x_3 + 6x_4 = 0$ in \mathbb{R}^4 .
 - (a) Find the parametric equation for the hyperplane.
 - (b) Find a basis for W.
 - (c) Compute the solution set to the linear system $x_1-2x_2+x_3+6x_4 = 0$ in \mathbb{R}^4 .

18. Let $A = \begin{bmatrix} -1 & 2 & 0 & 3 & 0 \\ 2 & 1 & 1 & -1 & 1 \\ 1 & 3 & 1 & 2 & 1 \end{bmatrix}$.

- (a) Find a basis for the Column Space of A, COL(A).
- (b) Compute the dimension of COL(A).
- (c) Find a basis for the null space of A, NULL(A).
- (d) Compute the dimension of NULL(A).
- 19. The linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ is given by the formula $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x+y \\ y+z \\ x-z \end{bmatrix}.$
 - (a) Find the matrix, A, to represent the linear transformation T.
 - (b) Compute the basis for the Range of T, which is the Column Space of A.

- (c) Find a basis for the null space of A, NULL(A).
- (d) Compute the dimension of COL(A) and NULL(A). The dimension of the range of T is called the rank of T and the dimension of the null space is called the nullity.
- (e) What is the dimension of the domain of T and the codomain of T? Again, compare Rank, Nullity and the dimension of the Domain. Do you see a relation?

6 Basic Transformations

- 20. Write the matrix for the following transformations described below.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ where the plane is rotated by 45° counter-clockwise.
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ where the plane is reflected about the x-axis.
 - (c) $T: \mathbb{R}^2 \to \mathbb{R}^2$ where the x-axis is contracted by half and the y-axis is dilated by 2.
 - (d) $T: \mathbb{R}^2 \to \mathbb{R}^2$ where the plane is rotated by 30° counter-clockwise and then reflected about the x-axis.
 - (e) $T: \mathbb{R}^2 \to \mathbb{R}^2$ where the plane is reflected about the x-axis and then rotated by 30° counter-clockwise.
 - (f) $T: \mathbb{R}^3 \to \mathbb{R}^3$ where the x-axis is contracted by half and the z-axis is dilated by 2.