Math 4160 - Quiz 3

Name:

For the following show all work clearly.

- 1. For the following lists of vectors show the list is independent or show it is dependent by displaying a non-trivial linear combination of the vectors equal to zero.
 - (a) $(1,0,0,3), (0,1,0,-1), (1,2,,0,1) \in \mathbb{R}^4.$ (b) $x^2 + 3x, x^2 + 6, x - 2 \in \mathcal{P}_2.$
 - (c) $x^3 + 3, x^2 1, x^3 + 2x^2 + 1 \in \mathcal{P}_3$.
- 2. Define a basis for a vector space.
- 3. Prove $\mathbf{v}_1 = (1, 2, 3)$, $\mathbf{v}_2 = (4, 5, 6)$ and $\mathbf{v}_3 = (7, 8, 9)$ is not a basis for \mathbb{R}^3 .
- 4. Prove $\mathbf{v}_1 = (1, 2, 3)$ and $\mathbf{v}_2 = (4, 5, 6)$ are independent. And select another vector in \mathbb{R}^3 call it \mathbf{w} so that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{w}$ is a basis for \mathbb{R}^3 . Show this.
- 5. Compute the dimension of the vector space spanned by $\mathbf{v}_1 = (1, 2, 3)$, $\mathbf{v}_2 = (4, 5, 6)$ and $\mathbf{v}_3 = (7, 8, 9)$.
- Compute the dimension of the vector space C² over ℝ. And the dimension of the vector space C² over C. Hint first find a basis for each.
- 7. Let $B_1 = \{(1,2), (3,4)\}$ and $B_2 = \{(1,-1), (2,0)\}$. And let B be the standard basis for \mathbb{R}^2 .
 - (a) Find the following change of basis matrices: $P_{B_1 \to B_2}$, $P_{B_2 \to B}$ and $P_{B \to B_2}$.
 - (b) Let (2,3) be a vector given in the standard basis. Find the coordinates in basis B_1 and the coordinates in basis B_2 . Demonstrate this by showing computing linear combination of vectors of in the bases.
- 8. Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ be a dependent list of vectors in a vector space V where

$$\mathbf{v}_1 + 3\mathbf{v}_2 - 7\mathbf{v}_3 + 0\mathbf{v}_4 = \mathbf{0}$$

Prove the $\operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4) = \operatorname{Span}(\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4).$