Math 4160 - Quiz 2

Name:

For the following show all work clearly.

- 1. Prove Theorem 4.1.1
- 2. In class we claimed that \mathbb{C} is a vector space over \mathbb{R} . Prove the following properties 2, 6 and 7.
- 3. In class we claimed that \mathbb{R} is **not** a vector space over \mathbb{C} . Show this is true by showing that \mathbb{R} over \mathbb{C} violates some property on the list.
- 4. We know \mathbb{C} is a vector space over \mathbb{R} . Show using the two step subspace test that $W = \{3a + ai | a \in \mathbb{R}\}$ is a subspace of \mathbb{C} .
- 5. We know \mathbb{C} is a vector space over \mathbb{C} . Show using the two step subspace test that $W = \{3a + ai | a \in \mathbb{R}\}$ is **not** a subspace of \mathbb{C} .
- 6. Show that $W = \{(a, 3a, a + b) | a, b \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 .
- 7. Show that $W = \{(a+1, 3a, a+b) | a, b \in \mathbb{R}\}$ is **not** a subspace of \mathbb{R}^3 .
- 8. Write down the definition for a list of vectors to be **independent**. And then prove that

A list of vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n$ is independent if and only if the only solution to

 $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 + \dots + a_n\mathbf{v}_n = 0$

is the trivial solution (which is $a_1 = a_2 = \cdots = a_n = 0$).

- 9. Show each of the following lists are independent or dependent
 - (a) (1,2,3), (1,0,-1) in ℝ³
 (b) (1,2,3), (4,5,6), (7,8,9) in ℝ³
 (c) x, 1 + x, 1 x in P₂