Math 3520 - Test 1 Review

1 Preliminaries and Induction

- 1. Induction, definition of odd, even, sets union, intersection, complement
- 2. Prove if $3|n^2$ then 3|n. Use the contrapositive and use division algorithm (that is cases for each possible remainder).
- 3. Prove If n is odd then $4|n^2 1$ for all $n \in \mathbb{Z}$ using division algorithm (that is cases for each possible remainder).
- 4. Prove with induction that

$$1+3+5+\dots+(2k-1)=k^2$$

- 5. Prove $8|5^{2n} 1$ for all $n \in \mathbb{N}$ using induction.
- 6. Prove $n! > 2^n$ for all $n \in \mathbb{N}$ with n > 3.
- 7. Define the sequence (induction)

$$a_1 = 1$$
 and $a_n = \sqrt{a_{n-1} + 3}$

- (a) Prove a_n is increasing. That is, prove $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$.
- (b) Prove a_n is bounded above by 6. That is, prove $a_n \leq 6$ for all $n \in \mathbb{N}$.
- 8. Which of the following are well ordered?
 - $A = \{1, 2, 3\}$
 - $B = \{-n | n \in \mathbb{N}\}$
 - $C = \{p | p \in \mathbb{Z} \text{ and } p \text{ is prime}\}$
 - Z
 - $E = \{n | n \in \mathbb{N} \text{ and } 3 | n\}$
 - $F = \{n | n \in \mathbb{Z} \text{ and } 3 | n\}$
 - $G = \{n | n \in \mathbb{N} \text{ and } 3 \le n \le 45\}$
 - $H = \{n | n \in \mathbb{Q} \text{ and } 3 \le n \le 45\}$
 - $I = \{1 \frac{1}{n} | n \in \mathbb{N}\}$
- 9. Prove: If A is well ordered and $B \subseteq A$ then B is well ordered.

2 Relations

- 10. Define relation, equivalence relation, well ordered, reflexive, symmetic, transitive, domain, codomain, partition of a set
- 11. We define the given relation from A to B by

 $R = \{(1, a), (2, a), (3, a), (4, a), (1, a), (2, a)\}$

where $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. What are the domain and codomain?

12. We define the given relation on A by

$$R = \{(1,1), (2,1), (3,1), (4,1), (1,2), (2,2)\}$$

where $A = \{1, 2, 3, 4\}.$

- (a) What are the domain and codomain?
- (b) Is R reflexive? If it is not reflexive, expand R so that it is reflexive.
- (c) Is R symmetric? If it is not symmetric, expand R so that it is symmetric.
- (d) Is R transitive? If it is not transitive, expand R so that it is transitive.
- (e) Is R an equivalense relation?
- 13. We define the given relation on A by

$$R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (3,2), (2,3), (a,b)(c,d)\}$$

where $A = \{1, 2, 3, 4\}.$

- (a) Assume R is an equivalence relation. Find (a, b) and (c, d).
- (b) What are the equivalence classes for R.
- 14. We define the given relation on \mathbb{Z} by

$$aRb \Leftrightarrow 4|3a - b.$$

- (a) Prove or disprove R is reflexive.
- (b) Prove or disprove R is symmetric.
- (c) Prove or disprove R is transitive.

- (d) What are the equivalence classes for R?
- 15. Let $a, b \in \mathbb{Z}$ and let

 $aRb \Leftrightarrow 3|a-b|$

be a relation on \mathbb{Z} . Prove R is an equivalence relation on \mathbb{Z} . And determine the distinct equivalence classes.

16. We define the given relation on A by

 $R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (3,2), (2,3), (a,b)(c,d)\}$

where $A = \{1, 2, 3, 4\}.$

- (a) Assume R is an equivalence relation. Find (a, b) and (c, d).
- (b) What are the equivalence classes for R.
- 17. We define the given two relations below on \mathbb{Z} . Answer the questions for each of them. One relation is an equivalence relation the other is not an equivalence relation
 - $aRb \Leftrightarrow 4|3a b$.
 - $aRb \Leftrightarrow 4|3a+b$.
 - (a) Prove R is reflexive.
 - (b) Prove R is symmetric.
 - (c) Prove R is transitive.
 - (d) What are the equivalence classes for R.
- 18. Let R_1 and R_2 be equivalence relations on the set A. Prove that $R = R_1 \cap R_2$ is also an equivalence relations on the set A.
- 19. Construct the addition and multiplication tables for \mathbb{Z}_4 and \mathbb{Z}_5 .

3 Functions

- 20. Define function, injective, surjective, domain, codomain, range, inverse image, inverse function, permutations.
- 21. Define $f : \{1, 2, 3\} \rightarrow \{4, 7, 9\}$ by f(1) = 4, f(2) = 4 and f(3) = 9.
 - (a) Is f injective, surjective or bijective?

(b) Compute $f(\{1,2\}), f^{-1}(\{1,4\})$ and $f \circ f^{-1}(\{4,9\})$.

- 22. Define $f : \mathbb{Z} \to \mathbb{Z}$ by f(n) = 2n 1. Is f injective, surjective or bijective? Prove or disprove.
- 23. Define $f: (-\infty, 0) \to [0, \infty)$ by $f(x) = x^2$.
 - (a) Is f injective, surjective or bijective? Prove or disprove.
 - (b) Compute f((-2,2)), $f^{-1}((-2,2))$ and $f^{-1} \circ f(\{4,9\})$.
 - (c) Compute $f^{-1} \circ f(\{4,9\})$ and $f \circ f^{-1}(\{4,9\})$.
- 24. Define $f : \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{1\}$ by $f(x) = \frac{x}{x-2}$. Is f injective, surjective or bijective? Prove or disprove.
- 25. Let $f: A \to B$ and $g: B \to C$. Prove the following.
 - (a) If f and g are injective then $g \circ f$ is injective.
 - (b) If f and g are surjective then $g \circ f$ is surjective.
- 26. Find all bijective functions from $\{1, 2, 3\}$ to $\{1, 2, 3\}$. How many functions did you come up with?
- 27. List all elements of the set S_3 . How many elements are in the set S_6 ?
- 28. For the following permutaions:

 $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$ compute:

- (a) $\sigma_1 \circ \sigma_1$
- (b) $\sigma_1 \circ \sigma_2 \circ \sigma_2$
- (c) σ_1^3
- (d) σ_1^{-1}

4 Cardinality

- 29. Define cardinality. That is $A \sim B$ if and only if ...
- 30. Know \sim is an equivalence relation and what that means.
- 31. Show $\mathbb{N} \sim 2\mathbb{N}$

- 32. Let A = [0, 2] and B = [-1, 6]. Show $f : A \to B$ given by $f(x) = \frac{7}{2}x 1$ is a bijection. What does this tell uas about the sets A and B?
- 33. Show the sets have the same cardinality
 - (a) \mathbb{N} and \mathbb{Z}
 - (b) $-\mathbb{N}$ and \mathbb{Q}
 - (c) $\{a, b, c\}$ and $\{1, 2, 7\}$
 - (d) $\mathbb{N} \times \{1, 2, 3, 4\}$ and \mathbb{N}
 - (e) [0,1) and (2,3]
 - (f) (0,1) and \mathbb{R}

34. Show the sets **do not** have the same cardinality

- (a) \mathbb{N} and \mathbb{R} .
- (b) \mathbb{N} and the set of irrationals.