Math 3520 - Quiz 5

Name:_

Type proof in complete and proper English.

- 1. State and prove the cancellation law.
- 2. Are the following algebraic structures groups? If it is a group prove it. If not prove it is not a group.
 - (a) (\mathbb{Q}^*, \cdot) where \cdot is regular multiplication.
 - (b) (\mathbb{Z}, \odot) where $a \odot b = a + b 2$.
 - (c) $(\mathbb{Z}, \circledast)$ where $a \circledast b = ab + a + b$.
 - (d) $(\mathbb{Q} \setminus \{-1\}, \circledast)$ where $a \circledast b = ab + a + b$.
- 3. For the following algebraic structures write the operation tables. State if the structure is a group or not. If not state which property fails and how. Identify the identity in each case.
 - (a) $(\mathbb{Z}_5, +)$
 - (b) (\mathbb{Z}_5, \cdot)
 - (c) $(\mathbb{Z}_{6}^{*}, \cdot)$
 - (d) (D, \circ) where

$$D = \left\{ \left(\begin{array}{rrr} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right), \left(\begin{array}{rrr} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right), \left(\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array} \right), \left(\begin{array}{rrr} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array} \right) \right\}$$

- 4. Prove the identity of a group is unique.
- 5. Prove. Let G be a group. If $a \in G$ then a^{-1} is unique.
- 6. If $a, b \in G$ then $(ab)^{-1} = b^{-1}a^{-1}$.