Math 3520 - Quiz 4

Name:

Type proof in complete and proper English.

- 1. Define $f : \mathbb{Z}_6 \to \mathbb{Z}_3$ by $f(n) = n \mod 3$ Is f injective, surjective or bijective? Prove or disprove.
- 2. Define $f: (0,4) \to (1,13)$ by f(x) = 3x + 1. Prove f is bijective.
- 3. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2 + 1$. Show f is not injective and show f is not surjective.
- 4. Let $f: A \to B$ and $g: B \to C$. Prove the following.
 - (a) If f and g are injective then $g \circ f$ is injective.
 - (b) If f and g are surjective then $g \circ f$ is surjective.
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 1$. Compute
 - f((-3,2))
 - $f^{-1}((-3,2))$
 - $f \circ f^{-1}((-3,2])$
 - $f^{-1} \circ f((-3,2))$
- 6. Let $f: A \to B$. Prove the following.
 - (a) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$ for any sets $A_1, A_2 \subseteq A$.
 - (b) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$ for any sets $A_1, A_2 \subseteq A$.
 - (c) Demonstrate that the \subseteq in Problem 6b cannot be equality by defining a function $f: A \to B$ and two sets $A_1, A_2 \subseteq A$ so that $f(A_1 \cap A_2) \neq f(A_1) \cap f(A_2)$.
- 7. List all elements of the set S_3 . How many elements are in the set S_6 ?
- 8. For the following permutaions:

 $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$ compute:

- (a) $\sigma_1 \circ \sigma_1$
- (b) $\sigma_1 \circ \sigma_2 \circ \sigma_2$
- (c) σ_1^3
- (d) σ_1^{-1}