Math 3520 - Quiz 3

Name:

Type proof in complete and proper English.

- 1. If A has the Well Ordered Property and B is a nonempty subset of A then B has the well ordered property.
- 2. Show $7|4^{3n} 1$ for all $n \in \mathbb{N}$. Use induction.
- 3. Let $A = \{1, 2, 3\}$ And let

$$R = \{(1,1), (1,2), (1,3), (2,2), (3,3)\}$$

be a relation on A. What is the domain of R What is the range of R? Find R^{-1} .

4. Let $A = \{1, 2, 3\}$ And let

$$R = \{(1,1), (1,2), (1,3), (2,2), (3,3)\}$$

be a relation on A.

- (a) Is R reflexive? Prove or disprove.
- (b) Is R symmetric? Prove or disprove.
- (c) Is R transitive? Prove or disprove.
- 5. Let $a, b \in \mathbb{Z}$ and lat

$$aRb \Leftrightarrow a - b \leq 2$$

be a relation on \mathbb{Z} .

- (a) Is R reflexive? Prove or disprove.
- (b) Is R symmetric? Prove or disprove.
- (c) Is R transitive? Prove or disprove.
- 6. Let $a, b \in \mathbb{Z}$ and let

$$aRb \Leftrightarrow 3|a-b|$$

be a relation on \mathbb{Z} . Prove R is an equivalence relation on \mathbb{Z} . And determine the distinct equivalence classes.

7. Write down the definition of a partition.

8. Prove the following theorem.

Theorem : Let A a set and let R be an equivalence relation on A. Prove that the equivalence classes of R forms a partition of A. Hint you may use the lemma from class.

- 9. Let R_1 and R_2 be equivalence relations on the set A. Prove that $R = R_1 \cap R_2$ is also an equivalence relations on the set A.
- 10. Construct the addition and multiplication tables for \mathbb{Z}_4 and \mathbb{Z}_5 .
- 11. Three questions nearly identical.
 - (a) Let $[a], [b] \in \mathbb{Z}_8$. If [a][b] = [0] then does it follow that either [a] = 0 or [b] = [0].
 - (b) Let $[a], [b] \in \mathbb{Z}_9$. If [a][b] = [0] then does it follow that either [a] = 0 or [b] = [0].
 - (c) Let $[a], [b] \in \mathbb{Z}_7$. If [a][b] = [0] then does it follow that either [a] = 0 or [b] = [0].