Math 2320 - Final Exam Review

The final exam will include topics from Test 1 and Test 2.

1. There will be an integral of each type we have learned.

- 2. Prepare the entire Test 2 Review as it is updated.
- 3. Velocity, Acceleration and Position
 - (a) Let $a(t) = -5\sin(t)$, v(0) = 5 and s(0) = -7.
 - i. Find v(t) and s(t).
 - ii. When does the object stop?
 - (b) Let a(t) = -12t, v(0) = 6 and s(0) = 0.
 - i. Find v(t) and s(t).
 - ii. When does the object stop?
 - iii. What is the position of the object when it stops?
- 4. Find the area between the functions
 - (a) $y = x^2$ and y = 4.
 - (b) $y = x^2$ and y = x + 1.
 - (c) $y = e^{3x}$, y = 4 and the y-axis.
 - (d) $x = y^2$ and x = 4.
 - (e) $x = y^2$ and y = x 1.
 - (f) $y = \ln(x), x = 1$ and y = 4.
 - (g) $y = \ln(x)$, x = 3 and the x-axis.
- 5. Find the volume of the solid formed when rotating the region bounded by $y = x^2$ and y = 4 around the x-axis using discs.
- 6. Find the volume of the solid formed when rotating the region bounded by $y = x^2$ and y = 4 in the first quadrant around the y-axis using discs.
- 7. Find the volume of the solid formed when rotating the region bounded by $y = e^{3x}$, y = 4 and the y-axis around the x-axis using discs.
- 8. Rotate the region bounded by y = 3x, y = 4 and the y-axis around the y-axis using discs.

- 9. Rotate the region bounded by the ellipse $x^2 + \frac{y^2}{4} = 1$, y = 2x 2 around the x-axis using discs.
 - (a) Set up the integral with discs.
 - (b) Compute the integral.

1 Taylor and Power Series

- 10. Find Taylor Series from definition.
 - (a) f(x) = cos(2x) at c = π/2
 (b) f(x) = cos(2x) at c = 0
 - (c) $f(x) = 3x^4 x^2 1$ at c = 2
 - (c) f(x) = 5x x 1 at c = 1
 - (d) $f(x) = \frac{1}{1+2x}$ at c = 2
- 11. Find Taylor Series from known series. In this problem we will have c = 0.
 - (a) $f(x) = \cos(2x)$.
 - (b) $f(x) = \frac{1}{1+x^2}$.
 - (c) $f(x) = \cos(x) 1 \frac{x^2}{2}$.
 - (d) $f(x) = \frac{\cos(x) 1 + \frac{x^2}{2}}{x^4}$.
 - (e) $\lim_{x\to 0} \frac{\cos(x)-1+\frac{x^2}{2}}{x^4}$ Hint use Problem 11d.
 - (f) $f(x) = \frac{x^2}{1-x^3}$.
 - (g) $f(x) = \ln(1 x^3)$
 - (h) $f(x) = e^{ix}$ compare to your problem from class $\cos(x) + i\sin(x)$
- 12. Find Intrerval of convergence.

(a)
$$f(x) = \sum \frac{1}{n^2} x^n$$
.
(b) $f(x) = \sum \frac{1}{n} x^n$.
(c) $f(x) = \sum \frac{2^n}{n} x^n$.
(d) $f(x) = \sum \frac{n}{2^n} x^n$.
(e) $f(x) = \sum \frac{1}{n!} x^n$.
(f) $f(x) = \sum \frac{1}{n2^n} (x-1)^n$.

2 Conic Sections

13. Graph the following. Make certain to label important points as in class.

(a)
$$\frac{x^2}{2} + \frac{y^2}{4} = 1.$$

(b) $\frac{x^2}{2} - \frac{y^2}{4} = 1.$
(c) $-\frac{x^2}{2} + \frac{y^2}{4} = 1.$
(d) $-\frac{x^2}{2} - \frac{y^2}{4} = 1.$
(e) $-\frac{x^2}{2} - \frac{y}{4} = 1.$
(f) $y = (x - 1)^2.$
(g) $x - 3 = (y - 2)^2.$
(h) $x^2 + \frac{y^2}{4} = 16.$
(i) $\frac{(x - 1)^2}{9} + \frac{(y + 1)^2}{4} = 1.$

(j)
$$\frac{(x-1)^2}{9} - \frac{(y+1)^2}{4} = 1.$$