Name:

1. Using the **definition** of the integral compute

$$\int_0^2 x^2 + 3\,dx.$$

- 2. Let acceleration be given by $a(t) = 4\sin(3t)$. And let $v_0 = 4$ and $s_0 = -3$. Find v and s. What is the velocity when $t = \pi$ sec? What is the maximum height (that is what is the maximum s)?
- 3. Find the area between the functions $y = \frac{1}{4} \ln(x)$, y = x, y = 0, and y = 5.
- 4. Find the volume of the solid formed when rotating the region in the first quadrant bounded by $y = x^2 + 2$ and y = 8 x and the y-axis around the x-axis.
- 5. Two easy integrals:
 - (a) $\int \sin(4x) dx$
 - (b) $\int \sec(6x) dx$
- 6. $\int \ln^2(x) dx$ Try $u = (\ln(x))^2$ and dv = 1dx.
- 7. $\int \frac{e^{3x}}{\cos(e^{3x}+1)} dx$
- 8. $\int \cos^2(x-2) \, dx$
- 9. $\int \sin^3(2x) \cos^{-1/2}(2x) dx$
- 10. $\int \frac{2x+4}{\sqrt{1-x^2}} dx$ Try splitting the integral into two separate integrals