
1 Integrals

- 1. Estimate $\int_0^4 x^2 + 1 \, dx$ using
 - (a) n = 1 rectangle.
 - (b) n = 2 rectangles.
 - (c) n = 4 rectangles.
- 2. Compute $\int_0^4 x^2 + 1 \, dx$ exactly.
- 3. Find the area under the curve $f(x) = x^3$ from x = 0 to x = 2.
- 4. Find the area between the curves $f(x) = x^2 + 1$ and f(x) = -2x + 4.

- 5. Find the area between the function $f(x) = \sin(x)$ and the x-axis from x = 0 to $x = \pi$.
- 6. Find the area between the function $f(x) = \sin(x)$ and the x-axis from x = 0 to $x = 2\pi$.
- 7. Compute the following

(a)
$$\int_0^{\pi} \sec^2(x) dx$$

(b) $\int_0^1 e^{x^2 + 1} x \, dx$ hint use $u = x^2 + 1$
(c) $\int_0^4 \frac{x+1}{x} \, dx$
(d) $\int \sqrt{x^3 + 1} \, x^2 \, dx$
(e) $\int \frac{x}{\sqrt{x^2 + 1}} \, dx$ hint use $u = x^2 + 1$

2 Everything from Practice Test 2

3 From Practice Test 1

- 8. Compute the derivative using the **definition** of the derivative
 - (a) f(x) = 3x + 5 at x = -1

(b)
$$f(x) = x^2$$
 at $x = 2$

- (c) $f(x) = x^2$
- (d) f(x) = 5x + 1
- (e) $f(x) = \sqrt{x}$
- (f) $f(x) = \frac{1}{x}$

9. Compute the derivative using implicit differentiation.

- (a) $x^3 + y^3 = 2x + 5$
- (b) $x^3y^3 = 2x + 5$
- (c) $\sin(x^3) + \sin(y^3) = 2x + 5$
- (d) $\sin(x^3y^3) = 2x + 5$
- (e) $\sin(xy^2) = 2x + 5y 7$
- (f) $y = 2^x$ use logarithmic differentiation here.
- (g) $y = x^x$ use logarithmic differentiation here.
- (h) $y = x^{x^2}$ use logarithmic differentiation here.
- (i) $y = x^{2^x}$ use logarithmic differentiation here.
- (j) $y = \sin(x)^x$ use logarithmic differentiation here.
- (k) $y = \sin(x)^{e^x}$ use logarithmic differentiation here.
- 10. Let $s(t) = -4.9t^2 + 3t + 1$ represent the height of a ball we through up in the air at time t = 0.
 - (a) What is the height of the ball at time t = 0?
 - (b) What is the speed of the ball at time t = 0?
 - (c) When does the ball have a velocity of zero?
 - (d) When does the ball hit the ground?
 - (e) What is the velocity of the ball when it hits the ground?
 - (f) Write out the velocity and acceleration equations (maybe you should do this question first).