Name:__

- 1. Find equation for the plane (in \mathbb{R}^3) so that
 - (a) the plane contains the point P(2, 2, -1), Q(1, 0, 3) and R(0, -1, 0).
 - (b) the plane contains the point P(2, 2, -1) and is perpendicular to the vector (1, -2, 0).

2. Let $W = \{(x, y, z) \in \mathbb{R}^3 : \text{ where } x - 3y - z = 0\}$. Use the two step subspace test to show $(W, +, \cdot)$ is a subspace.

3. Let $S = \{(1, 2, 1), (0, 1, 2), (0, -1, 0)\}.$

- (a) Is S linearly independent? (There is an easy test for this problem).
- (b) Is $(2,2,2) \in \text{Span}(S)$? If yes what is a linear combination of the vectors in S that equals (2,2,2)?
- (c) Does S span \mathbb{R}^3 ?

- 4. Let $B = \{(1,0), (0,1)\}, B_1 = \{(-1,1), (2,3)\}$ and $B_2 = \{(1,-1), (1,1)\}.$
 - (a) Find the change of basis matrices for $P_{B\to B_1}$ and $P_{B_1\to B_2}$.
 - (b) Find the coordinates of the point (1,3) (given in the standard basis) relative to the bases B_1 and B_2 .

- 5. Write the matrix for the following transformations described below.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ where the plane is rotated by 45° counter-clockwise.
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ where the plane is reflected about the x-axis.
 - (c) $T: \mathbb{R}^2 \to \mathbb{R}^2$ where the x-axis is contracted by half and the y-axis is dilated by 2.

6. For the following matrices find the characteristic equation, the eigenvalues and their cooresponding eigen vectors.

 $A = \left[\begin{array}{rr} 1 & 3 \\ 1 & -1 \end{array} \right]$