Math 3160 - Test 1

Name:_____

No calculators and show all work.

1. Solve the following systems of linear equations using row reduction.

ſ	x_1	$-3x_{2}$			$-6x_{5}$	= 3	
J			$+2x_{3}$	$-4x_{4}$		= 6	
Í				x_4	x_5	= 0	
l		$2x_2$	$-2x_{3}$		$+6x_{5}$	= 10	

2. Solve the following systems of linear equations using row reduction.

 $\begin{cases} 2x_1 & -x_2 & +3x_3 & = 2\\ 4x_1 & -x_2 & +x_3 & = 2\\ x_1 & & -x_3 & = 4 \end{cases}$

3. Solve the following systems of linear equations by setting up problem as a matrix problem and by finding an inverse matrix.

ſ	x_1	$+2x_{2}$	$+4x_{3}$	= 0
ł	x_1		$-x_{3}$	=2
	x_1	$+x_{2}$	$+x_{3}$	= -3

4. Solve the following using Cramer's rule.

ſ	$3x_1$		$+4x_{3}$	= 0
{		$-x_{2}$	$+3x_{3}$	= 0
l		$-3x_{2}$		= 2

5. Let T be the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ where

$$T\left(\left[\begin{array}{c}x\\y\\z\end{array}\right]\right) = \left[\begin{array}{c}x-2y\\3z+x\\y\\4z\end{array}\right].$$

(a) Write the matrix, A, for the transformation T.

(b) Compute
$$T\left(\begin{bmatrix} 0\\3\\3 \end{bmatrix}\right)$$
.
(c) Compute $T\left(\begin{bmatrix} a\\b\\c \end{bmatrix}\right) + T\left(\begin{bmatrix} d\\e\\f \end{bmatrix}\right)$
(d) Compute $T\left(\begin{bmatrix} a+d\\b+e\\c+f \end{bmatrix}\right)$

- 6. Define the points P(0, 1, 2), Q(1, 1, -1) and R(3, 0, 2)
 - (a) Find the angle between the vectors \overrightarrow{PQ} and \overrightarrow{PR} .
 - (b) Find the parametric equation of the line through points P and Q.
 - (c) Find the equation of the plane through points P, Q and R. Hint the vector (-3, -9, -1) is perpandicular to your plane.

7. Compute the indicated operation

(a) Compute
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{bmatrix}^{-2}$$

(b) Compute $\begin{bmatrix} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{bmatrix}^{4}$

8. Define the planes P_1 and P_2 as follows:

$$P_1: 3x - y + z = 12$$
$$P_2: x - z = 4$$

- (a) What are the two normal vectors for the above planes.
- (b) Find the angle between the two above planes.
- (c) Find set of all points that lay in both planes.