Name:

1. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} B = \begin{bmatrix} 4 & 0 & -1 \\ -1 & 2 & 0 \end{bmatrix}$$
 and $C = \begin{bmatrix} 2 & 0 \\ -3 & 0 \\ -1 & 1 \end{bmatrix}$

Compute the following: AB, AC, BC, CB

- 2. for the matrices A, B,C, D and X. Solve the following equations for the matrix X assuming the inverse exists whenever needed.
 - (a) AX = B

(b)
$$AB = XB + 3X$$

3. Compute the inverse matrix for the following (if it exists):

$A = \left[\right]$	23	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	B =	[1	-2	0	and $C =$	1	-2	0	
				0	3	1		0	3	1	
				0	1	1		1	1	1	

4. Solve the following systems of linear equations using matrices. First write as a matrix equation $AX = \mathbf{b}$ and then find A^{-1} and compute $A^{-1}\mathbf{b}$

(a)
$$\begin{cases} 2x_1 & -5x_2 &= 2\\ x_1 & -3x_2 &= 2 \end{cases}$$

(b)
$$\begin{cases} x_1 & -2x_2 &= -3\\ & 3x_2 & +x_3 &= 9\\ & x_2 & +x_3 &= 5 \end{cases}$$