Math 6250: Final Exam Review

1 Calculus

- 1. Prove $\lim_{n \to \infty} \frac{n^2 + 1}{3n^2 + 2} = \frac{1}{3}$
- 2. Prove $\lim_{n\to\infty} \frac{n^2+1}{3n+2} = \infty$
- 3. Assume $\lim_{n\to\infty} a_n = a$. Show (a_n) is bounded.
- 4. Assume (a_n) and (b_n) are sequences in ℝ. Show the following implication is **not** true
 If lim_{n→∞} a_n = 0 then lim_{n∈∞} a_nb_n = 0.
- 5. Assume (a_n) and (b_n) are sequences in \mathbb{R} . Show the following implication is true If $\lim_{n\to\infty} a_n = 0$ and (b_n) is bounded then $\lim_{n\in\infty} a_n b_n = 0$.
- 6. Assume $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$. Prove
 - (a) $\lim_{n\to\infty} k = 0$ where $k \in \mathbb{R}$.
 - (b) $\lim_{n\to\infty} ka_n = ka$ where $k \in \mathbb{R}$.
 - (c) $\lim_{n\to\infty} a_n + b_n = a + b$
 - (d) $\lim_{n\to\infty} a_n b_n = ab$
- 7. Prove $\lim_{x\to 3} 3x 5 = 4$
- 8. Prove $\lim_{x\to 2} 3x^2 5 = 7$
- 9. Assume $\lim_{x\to a} f(x) = F$. Prove f(x) is bounded near x = a. That is, show there is a $M \in \mathbb{R}$ and a $\delta > 0$ so that If x in Domain and $0 < |x a| < \delta$ then |f(x)| < M
- 10. Assume $\lim_{x\to a} f(x) = F$ and $\lim_{x\to a} g(x) = G$. Prove
 - (a) $\lim_{x\to a} k = k$ where $k \in \mathbb{R}$.
 - (b) $\lim_{x\to a} kf(x) = kF$ where $k \in \mathbb{R}$.
 - (c) $\lim_{x \to a} f(x) + g(x) = F + G$
 - (d) $\lim_{x \to a} f(x)g(x) = FG$
- 11. If f(x) and g(x) are differentiable at x = a. Prove the following:

- (a) The derivative of a constant is zero.
- (b) [kf(x)]' = kf'(x) where $k \in \mathbb{R}$
- (c) [f(x) + g(x)]' = f'(x) + g'(x)
- (d) [f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)
- (e) $[x^n]' = nx^{n-1}$ for all $n \in \mathbb{N}$
- 12. If f(x) is differentiable at x = a then f is continuous at x = a.
- 13. Show the inequality that $\cos(\theta) \leq \frac{\sin(\theta)}{\theta} \leq \frac{1}{\cos(\theta)}$ for $\theta \in (0, \pi/2)$.
- 14. Use the above inequality to show $[\sin(x)]' = \cos(x)$. Hint use $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$.
- 15. Use the $[\sin(x)]' = \cos(x)$ to find the derivatives for the other five trigonometric functions.
- 16. Compute the various derivatives of the new functions we learned involving $\sin(1/x)$ and absolute values.

2 Area and Dimension

- 17. Describe clearly a fractal of dimensions of $\frac{\ln(4)}{\ln(3)}$ and $\frac{\ln(5)}{\ln(3)}$. Describe the Koch snowflake.
- 18. Define the area of the unit circle as π . Use this definition and what we did in class to show that the area of a circle of radius r is πr^2 , the circumference of a circle is $2\pi r$ and the volume of a sphere of radius r is $\frac{4}{3}\pi r^2$.
- 19. Compute $\Gamma(1)$, $\Gamma(2)$, $\Gamma(3)$ and be able to prove the recursion formula $\Gamma(n) = (n-1)\Gamma(n-1)$.
- 20. Prove the three mean inequalities for arithmetic, geometric and harmonic.
- 21. Use the arithmetic-geometric mean inequality to prove

for all $n \in \mathbb{N}$ with n > 1

$$\sqrt[n]{1+\frac{\sqrt[n]{n}}{n}} + \sqrt[n]{1-\frac{\sqrt[n]{n}}{n}} < 2.$$