Name:

1. Prove the following is a subspace of $V = \mathbb{R}^3$.

$$\{(x, y, z) | x + y = 0\}$$

- 2. Prove **one** of the following:
 - (a) Let U and W be suspaces of V. Prove U + W is a subspace of V.
 - (b) Let U and W be suspaces of V. Prove $U \cap W$ is a subspace of V.
- 3. Is $(1, 0, 2, -4) \in \text{Span}((0, 0, 1, 0), (1, 1, -2, 1), (0, 1, 1, 1))$? Answer yes or no and justify your answer.
- 4. Prove: If the list $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ is linearally dependent then one of the vectors is a linear combination of the other two vectors.
- 5. Suppose V and W are finite dimensional vector spaces. Assume $T \in \mathcal{L}(V, W)$. Prove if T is injective then Nullity(T) = 0.
- 6. Prove that $\operatorname{Range}(T)^{\circ} = \operatorname{Null}(T')$.