Name:

- 1. Find eigenvalues and cooresponding eigenvectors for the following operators
 - (a) $T \in \mathcal{L}(\mathcal{P}_2(\mathbb{R}))$ where T(p) = p'
 - (b) $T \in \mathcal{L}(\mathcal{P}_2(\mathbb{R}))$ where T(p) = xp'
- 2. Let $V = U \oplus W$. Assume U and W are nonzero subspaces of V. And define $P \in \mathcal{L}(V)$ by P(u+w) = u where $u \in U$ and $w \in W$. Find all eigenvalues and eigenvectors of P.
- 3. Let $T \in \mathcal{L}(V)$ and let $v, w \in V$ be nonzero vectors so that

$$T(u) = 3w$$
 and $T(w) = 3u$.

Prove that either 3 or -3 is an eigenvalue of T.

- 4. Let $T \in \mathcal{L}(V)$ and assume $T^n = 0$ where $n \in \mathbb{N}$.
 - (a) Show I T is invertible and that

$$(I - T)^{-1} = I + T + T^{2} + \dots + T^{n-1}$$

- (b) Note $I 2^n T$ is invertible also. what is $(I 2^n T)^{-1}$?
- (c) What if we know that $I T^3 = 0$. Then guess T^{-1}